File size: 23,380 Bytes
592e96e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
# ==============================================================================
# 1. IMPORTS
# ==============================================================================
import os
import warnings
import wandb
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
import numpy as np
from tqdm import tqdm
from rdkit import Chem, RDLogger
from datasets import load_dataset, load_from_disk
from transformers import AutoTokenizer, BertModel, BertConfig
import pandas as pd
# ==============================================================================
# 2. INITIAL SETUP
# ==============================================================================
# Suppress RDKit console output
RDLogger.DisableLog('rdApp.*')
# Ignore warnings for cleaner output
warnings.filterwarnings("ignore")
# ==============================================================================
# 3. MODEL AND LOSS FUNCTION
# ==============================================================================
def global_average_pooling(x):
"""Global Average Pooling: from [B, max_len, hid_dim] to [B, hid_dim]"""
return torch.mean(x, dim=1)
class SimSonEncoder(nn.Module):
"""The main encoder model based on BERT."""
def __init__(self, config: BertConfig, max_len: int, dropout: float = 0.1):
super(SimSonEncoder, self).__init__()
self.bert = BertModel(config, add_pooling_layer=False)
self.linear = nn.Linear(config.hidden_size, max_len)
self.dropout = nn.Dropout(dropout)
def forward(self, input_ids, attention_mask=None):
if attention_mask is None:
attention_mask = input_ids.ne(self.bert.config.pad_token_id)
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
hidden_states = self.dropout(outputs.last_hidden_state)
pooled_output = global_average_pooling(hidden_states)
return self.linear(pooled_output)
class ContrastiveLoss(nn.Module):
"""Calculates the contrastive loss for the SimSon model."""
def __init__(self, temperature=0.2):
super(ContrastiveLoss, self).__init__()
self.temperature = temperature
self.similarity_fn = F.cosine_similarity
def forward(self, proj_1, proj_2):
batch_size = proj_1.shape[0]
device = proj_1.device
# Normalize projections
z_i = F.normalize(proj_1, p=2, dim=1)
z_j = F.normalize(proj_2, p=2, dim=1)
# Concatenate for similarity matrix calculation
representations = torch.cat([z_i, z_j], dim=0)
# Calculate cosine similarity between all pairs
similarity_matrix = self.similarity_fn(representations.unsqueeze(1), representations.unsqueeze(0), dim=2)
# Identify positive pairs (original and its augmentation)
sim_ij = torch.diag(similarity_matrix, batch_size)
sim_ji = torch.diag(similarity_matrix, -batch_size)
positives = torch.cat([sim_ij, sim_ji], dim=0)
# Create a mask to exclude self-comparisons
nominator = torch.exp(positives / self.temperature)
mask = (~torch.eye(batch_size * 2, batch_size * 2, dtype=torch.bool, device=device)).float()
denominator = mask * torch.exp(similarity_matrix / self.temperature)
# Calculate the final loss
loss = -torch.log(nominator / torch.sum(denominator, dim=1))
return torch.sum(loss) / (2 * batch_size)
# ==============================================================================
# 4. DATA HANDLING (Keeping your existing classes unchanged)
# ==============================================================================
class SmilesEnumerator:
"""Generates randomized SMILES strings for data augmentation."""
def randomize_smiles(self, smiles):
try:
mol = Chem.MolFromSmiles(smiles)
return Chem.MolToSmiles(mol, doRandom=True, canonical=False) if mol else smiles
except:
return smiles
class ContrastiveSmilesDataset(Dataset):
"""Dataset for creating pairs of augmented SMILES for contrastive learning."""
def __init__(self, smiles_list, tokenizer, max_length=512):
self.smiles_list = smiles_list
self.tokenizer = tokenizer
self.max_length = max_length
self.enumerator = SmilesEnumerator()
def __len__(self):
return len(self.smiles_list)
def __getitem__(self, idx):
original_smiles = self.smiles_list[idx]
# Create two different augmentations of the same SMILES
smiles_1 = self.enumerator.randomize_smiles(original_smiles)
smiles_2 = self.enumerator.randomize_smiles(original_smiles)
# Tokenize and do pad. Padding will be handled by the collate_fn.
tokens_1 = self.tokenizer(smiles_1, max_length=self.max_length, truncation=True, padding='max_length')
tokens_2 = self.tokenizer(smiles_2, max_length=self.max_length, truncation=True, padding='max_length')
return {
'input_ids_1': torch.tensor(tokens_1['input_ids']),
'attention_mask_1': torch.tensor(tokens_1['attention_mask']),
'input_ids_2': torch.tensor(tokens_2['input_ids']),
'attention_mask_2': torch.tensor(tokens_2['attention_mask']),
}
class PrecomputedContrastiveSmilesDataset(Dataset):
"""
A Dataset class that reads pre-augmented SMILES pairs from a Parquet file.
This is significantly faster as it offloads the expensive SMILES randomization
to a one-time preprocessing step.
"""
def __init__(self, tokenizer, file_path: str, max_length: int = 512):
self.tokenizer = tokenizer
self.max_length = max_length
# Load the entire dataset from the Parquet file into memory.
# This is fast and efficient for subsequent access.
print(f"Loading pre-computed data from {file_path}...")
self.data = pd.read_parquet(file_path)
print("Data loaded successfully.")
def __len__(self):
"""Returns the total number of pairs in the dataset."""
return len(self.data)
def __getitem__(self, idx):
"""
Retrieves a pre-augmented pair, tokenizes it, and returns it
in the format expected by the DataCollator.
"""
# Retrieve the pre-augmented pair from the DataFrame
row = self.data.iloc[idx]
smiles_1 = row['smiles_1']
smiles_2 = row['smiles_2']
# Tokenize the pair. This operation is fast and remains in the data loader.
tokens_1 = self.tokenizer(smiles_1, max_length=self.max_length, truncation=True, padding='max_length')
tokens_2 = self.tokenizer(smiles_2, max_length=self.max_length, truncation=True, padding='max_length')
return {
'input_ids_1': torch.tensor(tokens_1['input_ids']),
'attention_mask_1': torch.tensor(tokens_1['attention_mask']),
'input_ids_2': torch.tensor(tokens_2['input_ids']),
'attention_mask_2': torch.tensor(tokens_2['attention_mask']),
}
class PreTokenizedSmilesDataset(Dataset):
"""
A Dataset that loads a pre-tokenized and pre-padded dataset created
by the preprocessing script. It uses memory-mapping for instant loads
and high efficiency.
"""
def __init__(self, dataset_path: str):
# Load the dataset from disk. This is very fast due to memory-mapping.
self.dataset = load_from_disk(dataset_path)
# Set the format to PyTorch tensors for direct use in the model
self.dataset.set_format(type='torch', columns=[
'input_ids_1', 'attention_mask_1', 'input_ids_2', 'attention_mask_2'
])
print(f"Successfully loaded pre-tokenized dataset from {dataset_path}.")
def __len__(self):
"""Returns the total number of items in the dataset."""
return len(self.dataset)
def __getitem__(self, idx):
"""Retrieves a single pre-processed item."""
return self.dataset[idx]
class DataCollatorWithPadding:
"""
A collate function that dynamically pads inputs to the longest sequence
across both augmented views in the batch, ensuring consistent tensor shapes.
"""
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def __call__(self, features):
# Create a combined list of features for both views to find the global max length
combined_features = []
for feature in features:
combined_features.append({'input_ids': feature['input_ids_1'], 'attention_mask': feature['attention_mask_1']})
combined_features.append({'input_ids': feature['input_ids_2'], 'attention_mask': feature['attention_mask_2']})
# Pad the combined batch. This ensures all sequences are padded to the same length.
padded_combined = self.tokenizer.pad(combined_features, padding='longest', return_tensors='pt')
# Split the padded tensors back into two views
batch_size = len(features)
input_ids_1, input_ids_2 = torch.split(padded_combined['input_ids'], batch_size, dim=0)
attention_mask_1, attention_mask_2 = torch.split(padded_combined['attention_mask'], batch_size, dim=0)
return {
'input_ids_1': input_ids_1,
'attention_mask_1': attention_mask_1,
'input_ids_2': input_ids_2,
'attention_mask_2': attention_mask_2,
}
# ==============================================================================
# 5. CHECKPOINT UTILITIES
# ==============================================================================
def save_checkpoint(model, optimizer, scheduler, global_step, save_path):
"""Save complete checkpoint with model, optimizer, scheduler states and step count."""
checkpoint = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'global_step': global_step,
}
torch.save(checkpoint, save_path)
print(f"Full checkpoint saved at step {global_step}")
def load_checkpoint(checkpoint_path, model, optimizer, scheduler):
"""Load checkpoint and return the global step to resume from."""
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
global_step = checkpoint['global_step']
print(f"Checkpoint loaded from step {global_step}")
return global_step
# ==============================================================================
# 6. TRAINING AND EVALUATION LOOPS - MODIFIED
# ==============================================================================
def evaluation_step(model, batch, criterion, device):
"""Performs a single evaluation step on a batch of data."""
input_ids_1 = batch['input_ids_1'].to(device)
attention_mask_1 = batch['attention_mask_1'].to(device)
input_ids_2 = batch['input_ids_2'].to(device)
attention_mask_2 = batch['attention_mask_2'].to(device)
combined_input_ids = torch.cat([input_ids_1, input_ids_2], dim=0)
combined_attention_mask = torch.cat([attention_mask_1, attention_mask_2], dim=0)
with torch.no_grad():
combined_proj = model(combined_input_ids, combined_attention_mask)
batch_size = input_ids_1.size(0)
proj_1, proj_2 = torch.split(combined_proj, batch_size, dim=0)
loss = criterion(proj_1, proj_2)
return proj_1, proj_2, loss
def train_with_step_based_validation(model, train_loader, val_loader, optimizer, criterion, device,
scheduler, checkpoint_path, save_steps, validation_steps,
start_step=0, max_steps=None):
"""
Modified training function with step-based validation and checkpointing.
"""
model.train()
global_step = start_step
best_val_loss = float('inf')
# Calculate total steps if max_steps is not provided
if max_steps is None:
max_steps = len(train_loader)
progress_bar = tqdm(total=max_steps - start_step, desc="Training Steps", initial=start_step)
# Create iterator that can be resumed from any point
train_iterator = iter(train_loader)
# Skip batches if resuming from checkpoint
if start_step > 0:
batches_to_skip = start_step % len(train_loader)
for _ in range(batches_to_skip):
try:
next(train_iterator)
except StopIteration:
train_iterator = iter(train_loader)
while global_step < max_steps:
try:
batch = next(train_iterator)
except StopIteration:
train_iterator = iter(train_loader)
batch = next(train_iterator)
# Training step
input_ids_1 = batch['input_ids_1'].to(device)
attention_mask_1 = batch['attention_mask_1'].to(device)
input_ids_2 = batch['input_ids_2'].to(device)
attention_mask_2 = batch['attention_mask_2'].to(device)
optimizer.zero_grad()
with torch.autocast(dtype=torch.float16, device_type="cuda"):
combined_input_ids = torch.cat([input_ids_1, input_ids_2], dim=0)
combined_attention_mask = torch.cat([attention_mask_1, attention_mask_2], dim=0)
combined_proj = model(combined_input_ids, combined_attention_mask)
batch_size = input_ids_1.size(0)
proj_1, proj_2 = torch.split(combined_proj, batch_size, dim=0)
loss = criterion(proj_1, proj_2)
loss.backward()
optimizer.step()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
scheduler.step()
global_step += 1
progress_bar.update(1)
progress_bar.set_postfix(loss=f"{loss.item():.4f}", step=global_step)
wandb.log({
"train_batch_loss": loss.item(),
"learning_rate": scheduler.get_last_lr()[0],
"global_step": global_step
})
# Step-based validation
if global_step % validation_steps == 0:
val_loss = validate_epoch(model, val_loader, criterion, device)
wandb.log({
"val_loss": val_loss,
"global_step": global_step
})
# Save best model (model state only for best checkpoint)
if val_loss < best_val_loss:
best_val_loss = val_loss
model_save_path = checkpoint_path.replace('.pt', '_best_model.bin')
torch.save(model.state_dict(), model_save_path)
progress_bar.write(f"Step {global_step}: New best model saved with val loss {val_loss:.4f}")
model.train() # Resume training mode after validation
# Step-based checkpointing (full checkpoint)
if global_step % save_steps == 0:
save_checkpoint(model, optimizer, scheduler, global_step, checkpoint_path)
progress_bar.close()
return global_step
def validate_epoch(model, val_loader, criterion, device):
"""Validation function - unchanged from original."""
model.eval()
total_loss = 0
progress_bar = tqdm(val_loader, desc="Validating", leave=False)
for batch in progress_bar:
_, _, loss = evaluation_step(model, batch, criterion, device)
total_loss += loss.item()
avg_loss = total_loss / len(val_loader)
print(f'Validation loss: {avg_loss:.4f}')
return avg_loss
def test_model(model, test_loader, criterion, device):
"""Test function - unchanged from original."""
model.eval()
total_loss = 0
all_similarities = []
progress_bar = tqdm(test_loader, desc="Testing", leave=False)
for batch in progress_bar:
proj_1, proj_2, loss = evaluation_step(model, batch, criterion, device)
total_loss += loss.item()
proj_1_norm = F.normalize(proj_1, p=2, dim=1)
proj_2_norm = F.normalize(proj_2, p=2, dim=1)
batch_similarities = F.cosine_similarity(proj_1_norm, proj_2_norm, dim=1)
all_similarities.extend(batch_similarities.cpu().numpy())
avg_loss = total_loss / len(test_loader)
avg_sim = np.mean(all_similarities)
std_sim = np.std(all_similarities)
return avg_loss, avg_sim, std_sim
# ==============================================================================
# 7. MODIFIED SINGLE-GPU TRAINING
# ==============================================================================
def run_training(model_config, hparams, data_splits):
"""The main function to run the training and evaluation process with step-based validation."""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
wandb_key = os.getenv("WANDB_API_KEY")
if wandb_key:
wandb.login(key=wandb_key)
wandb.init(
#project="simson-contrastive-learning-single-gpu",
#name=f"run-{wandb.util.generate_id()}",
#config=hparams
)
train_smiles, val_smiles, test_smiles = data_splits
tokenizer = AutoTokenizer.from_pretrained('DeepChem/ChemBERTa-77M-MTR')
precomputed_train_path = '/home/jovyan/simson_training_bolgov/data/pubchem_119m_splits/train.parquet'
precomputed_test_path = '/home/jovyan/simson_training_bolgov/data/pubchem_119m_splits/test.parquet'
precomputed_val_path = '/home/jovyan/simson_training_bolgov/data/pubchem_119m_splits/validation.parquet'
train_dataset = PrecomputedContrastiveSmilesDataset(tokenizer, file_path=precomputed_train_path, max_length=hparams['max_length'])
test_dataset = PrecomputedContrastiveSmilesDataset(tokenizer, file_path=precomputed_test_path, max_length=hparams['max_length'])
val_dataset = PrecomputedContrastiveSmilesDataset(tokenizer, file_path=precomputed_val_path, max_length=hparams['max_length'])
train_loader = DataLoader(train_dataset, batch_size=hparams['batch_size'], shuffle=True, num_workers=8, prefetch_factor=128, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=hparams['batch_size'], shuffle=False, num_workers=2, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=hparams['batch_size'], shuffle=False, num_workers=2, pin_memory=True)
print('Initialized all data. Compiling the model...')
model = SimSonEncoder(config=model_config, max_len=hparams['max_embeddings']).to(device)
model = torch.compile(model)
model.load_state_dict(torch.load('/home/jovyan/simson_training_bolgov/simson_checkpoints/checkpoint_best_model.bin'))
print(model)
total_params = sum(p.numel() for p in model.parameters())
print(f"Total number of parameters: {total_params // 1_000_000} M")
wandb.config.update({"total_params_M": total_params // 1_000_000})
criterion = ContrastiveLoss(temperature=hparams['temperature']).to(device)
optimizer = optim.AdamW(model.parameters(), lr=hparams['lr'], weight_decay=1e-5, fused=True)
total_steps = hparams['epochs'] * len(train_loader)
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_mult=1, T_0=total_steps)
print("Starting training...")
wandb.watch(model, log='all', log_freq=5000)
start_step = 0
checkpoint_path = hparams['checkpoint_path']
# Resume from checkpoint if provided
if hparams.get('resume_checkpoint') and os.path.exists(hparams['resume_checkpoint']):
print(f"Resuming from checkpoint: {hparams['resume_checkpoint']}")
start_step = load_checkpoint(hparams['resume_checkpoint'], model, optimizer, scheduler)
# Train with step-based validation
final_step = train_with_step_based_validation(
model, train_loader, val_loader, optimizer, criterion, device,
scheduler, checkpoint_path, hparams['save_steps'], hparams['validation_steps'],
start_step=start_step, max_steps=total_steps
)
print("Training complete. Starting final testing...")
# Load the best model for testing (model state only)
best_model_path = checkpoint_path.replace('.pt', '_best_model.bin')
if os.path.exists(best_model_path):
model.load_state_dict(torch.load(best_model_path))
print("Loaded best model for testing")
test_loss, avg_sim, std_sim = test_model(model, test_loader, criterion, device)
print("\n--- Test Results ---")
print(f"Test Loss: {test_loss:.4f}")
print(f"Average Cosine Similarity: {avg_sim:.4f} ± {std_sim:.4f}")
print("--------------------")
wandb.log({
"test_loss": test_loss,
"avg_cosine_similarity": avg_sim,
"std_cosine_similarity": std_sim
})
# Save final model state only
final_model_path = hparams['save_path']
torch.save(model.state_dict(), final_model_path)
print(f"Final model saved to {final_model_path}")
wandb.finish()
# ==============================================================================
# 8. MAIN EXECUTION
# ==============================================================================
def main():
"""Main function to configure and run the training process."""
hparams = {
'epochs': 1,
'lr': 6e-6,
'temperature': 0.05,
'batch_size': 128,
'max_length': 256,
'save_path': "simson_checkpoints_more_epochs/simson_model_single_gpu.bin",
'checkpoint_path': "simson_checkpoints_more_epochs/checkpoint.pt", # Full checkpoint
'save_steps': 50000, # Save checkpoint every 10k steps
'validation_steps': 5000, # Validate every 5k steps
'max_embeddings': 512,
'resume_checkpoint': None, # Set to checkpoint path to resume
}
dataset = load_dataset('HoangHa/SMILES-250M')['train']
smiles_column_name = 'SMILES'
total_size = len(dataset)
test_size = int(0.1 * total_size)
val_size = int(0.1 * (total_size - test_size))
test_smiles = dataset.select(range(test_size))[smiles_column_name]
val_smiles = dataset.select(range(test_size, test_size + val_size))[smiles_column_name]
train_smiles = dataset.select(range(test_size + val_size, total_size))[smiles_column_name]
data_splits = (train_smiles, val_smiles, test_smiles)
tokenizer = AutoTokenizer.from_pretrained('DeepChem/ChemBERTa-77M-MTR')
model_config = BertConfig(
vocab_size=tokenizer.vocab_size,
hidden_size=768,
num_hidden_layers=4,
num_attention_heads=12,
intermediate_size=2048,
max_position_embeddings=512
)
# Create directories
save_dir = os.path.dirname(hparams['save_path'])
checkpoint_dir = os.path.dirname(hparams['checkpoint_path'])
for directory in [save_dir, checkpoint_dir]:
if not os.path.exists(directory):
os.makedirs(directory)
# Directly call the training function for a single-GPU run
run_training(model_config, hparams, data_splits)
if __name__ == '__main__':
main()
|