{ "results": { "ifeval": { "alias": "ifeval", "prompt_level_strict_acc,none": 0.8125, "prompt_level_strict_acc_stderr,none": 0.10077822185373188, "inst_level_strict_acc,none": 0.8333333333333334, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.8125, "prompt_level_loose_acc_stderr,none": 0.10077822185373188, "inst_level_loose_acc,none": 0.875, "inst_level_loose_acc_stderr,none": "N/A" }, "mmlu": { "acc,none": 0.7088815789473685, "acc_stderr,none": 0.012041450801133636, "alias": "mmlu" }, "mmlu_humanities": { "acc,none": 0.8028846153846154, "acc_stderr,none": 0.02739400408056615, "alias": " - humanities" }, "mmlu_formal_logic": { "alias": " - formal_logic", "acc,none": 0.6875, "acc_stderr,none": 0.11967838846954226 }, "mmlu_high_school_european_history": { "alias": " - high_school_european_history", "acc,none": 0.9375, "acc_stderr,none": 0.0625 }, "mmlu_high_school_us_history": { "alias": " - high_school_us_history", "acc,none": 0.875, "acc_stderr,none": 0.08539125638299665 }, "mmlu_high_school_world_history": { "alias": " - high_school_world_history", "acc,none": 0.9375, "acc_stderr,none": 0.0625 }, "mmlu_international_law": { "alias": " - international_law", "acc,none": 0.9375, "acc_stderr,none": 0.0625 }, "mmlu_jurisprudence": { "alias": " - jurisprudence", "acc,none": 0.8125, "acc_stderr,none": 0.10077822185373188 }, "mmlu_logical_fallacies": { "alias": " - logical_fallacies", "acc,none": 0.8125, "acc_stderr,none": 0.10077822185373188 }, "mmlu_moral_disputes": { "alias": " - moral_disputes", "acc,none": 0.625, "acc_stderr,none": 0.125 }, "mmlu_moral_scenarios": { "alias": " - moral_scenarios", "acc,none": 0.625, "acc_stderr,none": 0.125 }, "mmlu_philosophy": { "alias": " - philosophy", "acc,none": 0.8125, "acc_stderr,none": 0.10077822185373188 }, "mmlu_prehistory": { "alias": " - prehistory", "acc,none": 0.6875, "acc_stderr,none": 0.11967838846954226 }, "mmlu_professional_law": { "alias": " - professional_law", "acc,none": 0.8125, "acc_stderr,none": 0.10077822185373188 }, "mmlu_world_religions": { "alias": " - world_religions", "acc,none": 0.875, "acc_stderr,none": 0.08539125638299665 }, "mmlu_other": { "acc,none": 0.75, "acc_stderr,none": 0.028846153846153848, "alias": " - other" }, "mmlu_business_ethics": { "alias": " - business_ethics", "acc,none": 0.9375, "acc_stderr,none": 0.0625 }, "mmlu_clinical_knowledge": { "alias": " - clinical_knowledge", "acc,none": 0.6875, "acc_stderr,none": 0.11967838846954226 }, "mmlu_college_medicine": { "alias": " - college_medicine", "acc,none": 0.8125, "acc_stderr,none": 0.10077822185373188 }, "mmlu_global_facts": { "alias": " - global_facts", "acc,none": 0.5625, "acc_stderr,none": 0.128086884574495 }, "mmlu_human_aging": { "alias": " - human_aging", "acc,none": 0.75, "acc_stderr,none": 0.11180339887498948 }, "mmlu_management": { "alias": " - management", "acc,none": 0.8125, "acc_stderr,none": 0.10077822185373188 }, "mmlu_marketing": { "alias": " - marketing", "acc,none": 0.875, "acc_stderr,none": 0.08539125638299665 }, "mmlu_medical_genetics": { "alias": " - medical_genetics", "acc,none": 0.875, "acc_stderr,none": 0.08539125638299665 }, "mmlu_miscellaneous": { "alias": " - miscellaneous", "acc,none": 0.875, "acc_stderr,none": 0.08539125638299665 }, "mmlu_nutrition": { "alias": " - nutrition", "acc,none": 0.6875, "acc_stderr,none": 0.11967838846954226 }, "mmlu_professional_accounting": { "alias": " - professional_accounting", "acc,none": 0.5, "acc_stderr,none": 0.12909944487358055 }, "mmlu_professional_medicine": { "alias": " - professional_medicine", "acc,none": 0.9375, "acc_stderr,none": 0.0625 }, "mmlu_virology": { "alias": " - virology", "acc,none": 0.4375, "acc_stderr,none": 0.128086884574495 }, "mmlu_social_sciences": { "acc,none": 0.8385416666666666, "acc_stderr,none": 0.025762391391041032, "alias": " - social sciences" }, "mmlu_econometrics": { "alias": " - econometrics", "acc,none": 0.625, "acc_stderr,none": 0.125 }, "mmlu_high_school_geography": { "alias": " - high_school_geography", "acc,none": 0.9375, "acc_stderr,none": 0.0625 }, "mmlu_high_school_government_and_politics": { "alias": " - high_school_government_and_politics", "acc,none": 1.0, "acc_stderr,none": 0.0 }, "mmlu_high_school_macroeconomics": { "alias": " - high_school_macroeconomics", "acc,none": 0.6875, "acc_stderr,none": 0.11967838846954226 }, "mmlu_high_school_microeconomics": { "alias": " - high_school_microeconomics", "acc,none": 0.8125, "acc_stderr,none": 0.10077822185373188 }, "mmlu_high_school_psychology": { "alias": " - high_school_psychology", "acc,none": 0.875, "acc_stderr,none": 0.08539125638299665 }, "mmlu_human_sexuality": { "alias": " - human_sexuality", "acc,none": 0.875, "acc_stderr,none": 0.08539125638299665 }, "mmlu_professional_psychology": { "alias": " - professional_psychology", "acc,none": 0.9375, "acc_stderr,none": 0.0625 }, "mmlu_public_relations": { "alias": " - public_relations", "acc,none": 0.625, "acc_stderr,none": 0.125 }, "mmlu_security_studies": { "alias": " - security_studies", "acc,none": 0.875, "acc_stderr,none": 0.08539125638299665 }, "mmlu_sociology": { "alias": " - sociology", "acc,none": 0.8125, "acc_stderr,none": 0.10077822185373188 }, "mmlu_us_foreign_policy": { "alias": " - us_foreign_policy", "acc,none": 1.0, "acc_stderr,none": 0.0 }, "mmlu_stem": { "acc,none": 0.6217105263157895, "acc_stderr,none": 0.018126960046215203, "alias": "stem" }, "mmlu_abstract_algebra": { "alias": " - abstract_algebra", "acc,none": 0.3125, "acc_stderr,none": 0.11967838846954226 }, "mmlu_anatomy": { "alias": " - anatomy", "acc,none": 0.75, "acc_stderr,none": 0.11180339887498948 }, "mmlu_astronomy": { "alias": " - astronomy", "acc,none": 0.9375, "acc_stderr,none": 0.0625 }, "mmlu_college_biology": { "alias": " - college_biology", "acc,none": 0.8125, "acc_stderr,none": 0.10077822185373188 }, "mmlu_college_chemistry": { "alias": " - college_chemistry", "acc,none": 0.3125, "acc_stderr,none": 0.11967838846954226 }, "mmlu_college_computer_science": { "alias": " - college_computer_science", "acc,none": 0.4375, "acc_stderr,none": 0.128086884574495 }, "mmlu_college_mathematics": { "alias": " - college_mathematics", "acc,none": 0.25, "acc_stderr,none": 0.11180339887498948 }, "mmlu_college_physics": { "alias": " - college_physics", "acc,none": 0.625, "acc_stderr,none": 0.125 }, "mmlu_computer_security": { "alias": " - computer_security", "acc,none": 0.625, "acc_stderr,none": 0.125 }, "mmlu_conceptual_physics": { "alias": " - conceptual_physics", "acc,none": 0.75, "acc_stderr,none": 0.11180339887498948 }, "mmlu_electrical_engineering": { "alias": " - electrical_engineering", "acc,none": 0.5625, "acc_stderr,none": 0.128086884574495 }, "mmlu_elementary_mathematics": { "alias": " - elementary_mathematics", "acc,none": 0.5, "acc_stderr,none": 0.12909944487358055 }, "mmlu_high_school_biology": { "alias": " - high_school_biology", "acc,none": 1.0, "acc_stderr,none": 0.0 }, "mmlu_high_school_chemistry": { "alias": " - high_school_chemistry", "acc,none": 0.75, "acc_stderr,none": 0.11180339887498948 }, "mmlu_high_school_computer_science": { "alias": " - high_school_computer_science", "acc,none": 0.875, "acc_stderr,none": 0.08539125638299665 }, "mmlu_high_school_mathematics": { "alias": " - high_school_mathematics", "acc,none": 0.3125, "acc_stderr,none": 0.11967838846954226 }, "mmlu_high_school_physics": { "alias": " - high_school_physics", "acc,none": 0.5625, "acc_stderr,none": 0.128086884574495 }, "mmlu_high_school_statistics": { "alias": " - high_school_statistics", "acc,none": 0.8125, "acc_stderr,none": 0.10077822185373188 }, "mmlu_machine_learning": { "alias": " - machine_learning", "acc,none": 0.625, "acc_stderr,none": 0.125 } }, "groups": { "mmlu": { "acc,none": 0.7088815789473685, "acc_stderr,none": 0.012041450801133636, "alias": "mmlu" }, "mmlu_humanities": { "acc,none": 0.8028846153846154, "acc_stderr,none": 0.02739400408056615, "alias": " - humanities" }, "mmlu_other": { "acc,none": 0.75, "acc_stderr,none": 0.028846153846153848, "alias": " - other" }, "mmlu_social_sciences": { "acc,none": 0.8385416666666666, "acc_stderr,none": 0.025762391391041032, "alias": " - social sciences" }, "mmlu_stem": { "acc,none": 0.6217105263157895, "acc_stderr,none": 0.018126960046215203, "alias": "stem" } }, "group_subtasks": { "ifeval": [], "mmlu_humanities": [ "mmlu_moral_disputes", "mmlu_high_school_european_history", "mmlu_moral_scenarios", "mmlu_formal_logic", "mmlu_prehistory", "mmlu_professional_law", "mmlu_world_religions", "mmlu_international_law", "mmlu_high_school_us_history", "mmlu_high_school_world_history", "mmlu_logical_fallacies", "mmlu_jurisprudence", "mmlu_philosophy" ], "mmlu_social_sciences": [ "mmlu_professional_psychology", "mmlu_high_school_psychology", "mmlu_econometrics", "mmlu_public_relations", "mmlu_us_foreign_policy", "mmlu_high_school_microeconomics", "mmlu_high_school_macroeconomics", "mmlu_sociology", "mmlu_high_school_geography", "mmlu_high_school_government_and_politics", "mmlu_security_studies", "mmlu_human_sexuality" ], "mmlu_other": [ "mmlu_professional_accounting", "mmlu_miscellaneous", "mmlu_marketing", "mmlu_business_ethics", "mmlu_human_aging", "mmlu_professional_medicine", "mmlu_nutrition", "mmlu_college_medicine", "mmlu_virology", "mmlu_medical_genetics", "mmlu_clinical_knowledge", "mmlu_global_facts", "mmlu_management" ], "mmlu": [ "mmlu_stem", "mmlu_other", "mmlu_social_sciences", "mmlu_humanities" ], "mmlu_stem": [ "mmlu_elementary_mathematics", "mmlu_high_school_biology", "mmlu_electrical_engineering", "mmlu_high_school_mathematics", "mmlu_astronomy", "mmlu_machine_learning", "mmlu_college_chemistry", "mmlu_abstract_algebra", "mmlu_high_school_chemistry", "mmlu_computer_security", "mmlu_college_biology", "mmlu_high_school_computer_science", "mmlu_anatomy", "mmlu_college_mathematics", "mmlu_high_school_statistics", "mmlu_high_school_physics", "mmlu_conceptual_physics", "mmlu_college_computer_science", "mmlu_college_physics" ] }, "configs": { "ifeval": { "task": "ifeval", "dataset_path": "google/IFEval", "test_split": "train", "doc_to_text": "prompt", "doc_to_target": 0, "unsafe_code": false, "process_results": "def process_results(doc, results):\n inp = InputExample(\n key=doc[\"key\"],\n instruction_id_list=doc[\"instruction_id_list\"],\n prompt=doc[\"prompt\"],\n kwargs=doc[\"kwargs\"],\n )\n response = results[0]\n\n out_strict = test_instruction_following_strict(inp, response)\n out_loose = test_instruction_following_loose(inp, response)\n\n return {\n \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n }\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "prompt_level_strict_acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "inst_level_strict_acc", "aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n", "higher_is_better": true }, { "metric": "prompt_level_loose_acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "inst_level_loose_acc", "aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [], "do_sample": false, "temperature": 0.0, "max_gen_toks": 1280 }, "repeats": 1, "should_decontaminate": false, "metadata": { "version": 4.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_abstract_algebra": { "task": "mmlu_abstract_algebra", "task_alias": "abstract_algebra", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "abstract_algebra", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_anatomy": { "task": "mmlu_anatomy", "task_alias": "anatomy", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "anatomy", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about anatomy.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_astronomy": { "task": "mmlu_astronomy", "task_alias": "astronomy", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "astronomy", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about astronomy.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_business_ethics": { "task": "mmlu_business_ethics", "task_alias": "business_ethics", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "business_ethics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about business ethics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_clinical_knowledge": { "task": "mmlu_clinical_knowledge", "task_alias": "clinical_knowledge", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "clinical_knowledge", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_college_biology": { "task": "mmlu_college_biology", "task_alias": "college_biology", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "college_biology", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about college biology.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_college_chemistry": { "task": "mmlu_college_chemistry", "task_alias": "college_chemistry", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "college_chemistry", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_college_computer_science": { "task": "mmlu_college_computer_science", "task_alias": "college_computer_science", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "college_computer_science", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about college computer science.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_college_mathematics": { "task": "mmlu_college_mathematics", "task_alias": "college_mathematics", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "college_mathematics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_college_medicine": { "task": "mmlu_college_medicine", "task_alias": "college_medicine", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "college_medicine", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about college medicine.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_college_physics": { "task": "mmlu_college_physics", "task_alias": "college_physics", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "college_physics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about college physics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_computer_security": { "task": "mmlu_computer_security", "task_alias": "computer_security", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "computer_security", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about computer security.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_conceptual_physics": { "task": "mmlu_conceptual_physics", "task_alias": "conceptual_physics", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "conceptual_physics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_econometrics": { "task": "mmlu_econometrics", "task_alias": "econometrics", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "econometrics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about econometrics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_electrical_engineering": { "task": "mmlu_electrical_engineering", "task_alias": "electrical_engineering", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "electrical_engineering", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_elementary_mathematics": { "task": "mmlu_elementary_mathematics", "task_alias": "elementary_mathematics", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "elementary_mathematics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_formal_logic": { "task": "mmlu_formal_logic", "task_alias": "formal_logic", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "formal_logic", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about formal logic.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_global_facts": { "task": "mmlu_global_facts", "task_alias": "global_facts", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "global_facts", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about global facts.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_biology": { "task": "mmlu_high_school_biology", "task_alias": "high_school_biology", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_biology", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school biology.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_chemistry": { "task": "mmlu_high_school_chemistry", "task_alias": "high_school_chemistry", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_chemistry", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_computer_science": { "task": "mmlu_high_school_computer_science", "task_alias": "high_school_computer_science", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_computer_science", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_european_history": { "task": "mmlu_high_school_european_history", "task_alias": "high_school_european_history", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_european_history", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school european history.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_geography": { "task": "mmlu_high_school_geography", "task_alias": "high_school_geography", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_geography", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school geography.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_government_and_politics": { "task": "mmlu_high_school_government_and_politics", "task_alias": "high_school_government_and_politics", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_government_and_politics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_macroeconomics": { "task": "mmlu_high_school_macroeconomics", "task_alias": "high_school_macroeconomics", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_macroeconomics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_mathematics": { "task": "mmlu_high_school_mathematics", "task_alias": "high_school_mathematics", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_mathematics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_microeconomics": { "task": "mmlu_high_school_microeconomics", "task_alias": "high_school_microeconomics", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_microeconomics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_physics": { "task": "mmlu_high_school_physics", "task_alias": "high_school_physics", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_physics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school physics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_psychology": { "task": "mmlu_high_school_psychology", "task_alias": "high_school_psychology", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_psychology", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_statistics": { "task": "mmlu_high_school_statistics", "task_alias": "high_school_statistics", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_statistics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_us_history": { "task": "mmlu_high_school_us_history", "task_alias": "high_school_us_history", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_us_history", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school us history.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_high_school_world_history": { "task": "mmlu_high_school_world_history", "task_alias": "high_school_world_history", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "high_school_world_history", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about high school world history.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_human_aging": { "task": "mmlu_human_aging", "task_alias": "human_aging", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "human_aging", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about human aging.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_human_sexuality": { "task": "mmlu_human_sexuality", "task_alias": "human_sexuality", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "human_sexuality", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_international_law": { "task": "mmlu_international_law", "task_alias": "international_law", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "international_law", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about international law.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_jurisprudence": { "task": "mmlu_jurisprudence", "task_alias": "jurisprudence", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "jurisprudence", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_logical_fallacies": { "task": "mmlu_logical_fallacies", "task_alias": "logical_fallacies", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "logical_fallacies", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_machine_learning": { "task": "mmlu_machine_learning", "task_alias": "machine_learning", "tag": "mmlu_stem_tasks", "dataset_path": "cais/mmlu", "dataset_name": "machine_learning", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about machine learning.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_management": { "task": "mmlu_management", "task_alias": "management", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "management", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about management.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_marketing": { "task": "mmlu_marketing", "task_alias": "marketing", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "marketing", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about marketing.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_medical_genetics": { "task": "mmlu_medical_genetics", "task_alias": "medical_genetics", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "medical_genetics", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_miscellaneous": { "task": "mmlu_miscellaneous", "task_alias": "miscellaneous", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "miscellaneous", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_moral_disputes": { "task": "mmlu_moral_disputes", "task_alias": "moral_disputes", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "moral_disputes", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_moral_scenarios": { "task": "mmlu_moral_scenarios", "task_alias": "moral_scenarios", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "moral_scenarios", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_nutrition": { "task": "mmlu_nutrition", "task_alias": "nutrition", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "nutrition", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about nutrition.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_philosophy": { "task": "mmlu_philosophy", "task_alias": "philosophy", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "philosophy", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about philosophy.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_prehistory": { "task": "mmlu_prehistory", "task_alias": "prehistory", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "prehistory", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about prehistory.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_professional_accounting": { "task": "mmlu_professional_accounting", "task_alias": "professional_accounting", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "professional_accounting", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_professional_law": { "task": "mmlu_professional_law", "task_alias": "professional_law", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "professional_law", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about professional law.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_professional_medicine": { "task": "mmlu_professional_medicine", "task_alias": "professional_medicine", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "professional_medicine", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_professional_psychology": { "task": "mmlu_professional_psychology", "task_alias": "professional_psychology", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "professional_psychology", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_public_relations": { "task": "mmlu_public_relations", "task_alias": "public_relations", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "public_relations", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about public relations.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_security_studies": { "task": "mmlu_security_studies", "task_alias": "security_studies", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "security_studies", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about security studies.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_sociology": { "task": "mmlu_sociology", "task_alias": "sociology", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "sociology", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about sociology.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_us_foreign_policy": { "task": "mmlu_us_foreign_policy", "task_alias": "us_foreign_policy", "tag": "mmlu_social_sciences_tasks", "dataset_path": "cais/mmlu", "dataset_name": "us_foreign_policy", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_virology": { "task": "mmlu_virology", "task_alias": "virology", "tag": "mmlu_other_tasks", "dataset_path": "cais/mmlu", "dataset_name": "virology", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about virology.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } }, "mmlu_world_religions": { "task": "mmlu_world_religions", "task_alias": "world_religions", "tag": "mmlu_humanities_tasks", "dataset_path": "cais/mmlu", "dataset_name": "world_religions", "dataset_kwargs": { "trust_remote_code": true }, "test_split": "test", "fewshot_split": "dev", "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", "doc_to_target": "answer", "unsafe_code": false, "doc_to_choice": [ "A", "B", "C", "D" ], "description": "The following are multiple choice questions (with answers) about world religions.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 1.0, "pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "max_gen_toks": 4096, "max_model_len": 8192, "enable_prefix_caching": true, "enable_chunked_prefill": true, "tensor_parallel_size": 8 } } }, "versions": { "ifeval": 4.0, "mmlu": 2, "mmlu_abstract_algebra": 1.0, "mmlu_anatomy": 1.0, "mmlu_astronomy": 1.0, "mmlu_business_ethics": 1.0, "mmlu_clinical_knowledge": 1.0, "mmlu_college_biology": 1.0, "mmlu_college_chemistry": 1.0, "mmlu_college_computer_science": 1.0, "mmlu_college_mathematics": 1.0, "mmlu_college_medicine": 1.0, "mmlu_college_physics": 1.0, "mmlu_computer_security": 1.0, "mmlu_conceptual_physics": 1.0, "mmlu_econometrics": 1.0, "mmlu_electrical_engineering": 1.0, "mmlu_elementary_mathematics": 1.0, "mmlu_formal_logic": 1.0, "mmlu_global_facts": 1.0, "mmlu_high_school_biology": 1.0, "mmlu_high_school_chemistry": 1.0, "mmlu_high_school_computer_science": 1.0, "mmlu_high_school_european_history": 1.0, "mmlu_high_school_geography": 1.0, "mmlu_high_school_government_and_politics": 1.0, "mmlu_high_school_macroeconomics": 1.0, "mmlu_high_school_mathematics": 1.0, "mmlu_high_school_microeconomics": 1.0, "mmlu_high_school_physics": 1.0, "mmlu_high_school_psychology": 1.0, "mmlu_high_school_statistics": 1.0, "mmlu_high_school_us_history": 1.0, "mmlu_high_school_world_history": 1.0, "mmlu_human_aging": 1.0, "mmlu_human_sexuality": 1.0, "mmlu_humanities": 2, "mmlu_international_law": 1.0, "mmlu_jurisprudence": 1.0, "mmlu_logical_fallacies": 1.0, "mmlu_machine_learning": 1.0, "mmlu_management": 1.0, "mmlu_marketing": 1.0, "mmlu_medical_genetics": 1.0, "mmlu_miscellaneous": 1.0, "mmlu_moral_disputes": 1.0, "mmlu_moral_scenarios": 1.0, "mmlu_nutrition": 1.0, "mmlu_other": 2, "mmlu_philosophy": 1.0, "mmlu_prehistory": 1.0, "mmlu_professional_accounting": 1.0, "mmlu_professional_law": 1.0, "mmlu_professional_medicine": 1.0, "mmlu_professional_psychology": 1.0, "mmlu_public_relations": 1.0, "mmlu_security_studies": 1.0, "mmlu_social_sciences": 2, "mmlu_sociology": 1.0, "mmlu_stem": 2, "mmlu_us_foreign_policy": 1.0, "mmlu_virology": 1.0, "mmlu_world_religions": 1.0 }, "n-shot": { "ifeval": 0, "mmlu_abstract_algebra": 0, "mmlu_anatomy": 0, "mmlu_astronomy": 0, "mmlu_business_ethics": 0, "mmlu_clinical_knowledge": 0, "mmlu_college_biology": 0, "mmlu_college_chemistry": 0, "mmlu_college_computer_science": 0, "mmlu_college_mathematics": 0, "mmlu_college_medicine": 0, "mmlu_college_physics": 0, "mmlu_computer_security": 0, "mmlu_conceptual_physics": 0, "mmlu_econometrics": 0, "mmlu_electrical_engineering": 0, "mmlu_elementary_mathematics": 0, "mmlu_formal_logic": 0, "mmlu_global_facts": 0, "mmlu_high_school_biology": 0, "mmlu_high_school_chemistry": 0, "mmlu_high_school_computer_science": 0, "mmlu_high_school_european_history": 0, "mmlu_high_school_geography": 0, "mmlu_high_school_government_and_politics": 0, "mmlu_high_school_macroeconomics": 0, "mmlu_high_school_mathematics": 0, "mmlu_high_school_microeconomics": 0, "mmlu_high_school_physics": 0, "mmlu_high_school_psychology": 0, "mmlu_high_school_statistics": 0, "mmlu_high_school_us_history": 0, "mmlu_high_school_world_history": 0, "mmlu_human_aging": 0, "mmlu_human_sexuality": 0, "mmlu_international_law": 0, "mmlu_jurisprudence": 0, "mmlu_logical_fallacies": 0, "mmlu_machine_learning": 0, "mmlu_management": 0, "mmlu_marketing": 0, "mmlu_medical_genetics": 0, "mmlu_miscellaneous": 0, "mmlu_moral_disputes": 0, "mmlu_moral_scenarios": 0, "mmlu_nutrition": 0, "mmlu_philosophy": 0, "mmlu_prehistory": 0, "mmlu_professional_accounting": 0, "mmlu_professional_law": 0, "mmlu_professional_medicine": 0, "mmlu_professional_psychology": 0, "mmlu_public_relations": 0, "mmlu_security_studies": 0, "mmlu_sociology": 0, "mmlu_us_foreign_policy": 0, "mmlu_virology": 0, "mmlu_world_religions": 0 }, "higher_is_better": { "ifeval": { "prompt_level_strict_acc": true, "inst_level_strict_acc": true, "prompt_level_loose_acc": true, "inst_level_loose_acc": true }, "mmlu": { "acc": true }, "mmlu_abstract_algebra": { "acc": true }, "mmlu_anatomy": { "acc": true }, "mmlu_astronomy": { "acc": true }, "mmlu_business_ethics": { "acc": true }, "mmlu_clinical_knowledge": { "acc": true }, "mmlu_college_biology": { "acc": true }, "mmlu_college_chemistry": { "acc": true }, "mmlu_college_computer_science": { "acc": true }, "mmlu_college_mathematics": { "acc": true }, "mmlu_college_medicine": { "acc": true }, "mmlu_college_physics": { "acc": true }, "mmlu_computer_security": { "acc": true }, "mmlu_conceptual_physics": { "acc": true }, "mmlu_econometrics": { "acc": true }, "mmlu_electrical_engineering": { "acc": true }, "mmlu_elementary_mathematics": { "acc": true }, "mmlu_formal_logic": { "acc": true }, "mmlu_global_facts": { "acc": true }, "mmlu_high_school_biology": { "acc": true }, "mmlu_high_school_chemistry": { "acc": true }, "mmlu_high_school_computer_science": { "acc": true }, "mmlu_high_school_european_history": { "acc": true }, "mmlu_high_school_geography": { "acc": true }, "mmlu_high_school_government_and_politics": { "acc": true }, "mmlu_high_school_macroeconomics": { "acc": true }, "mmlu_high_school_mathematics": { "acc": true }, "mmlu_high_school_microeconomics": { "acc": true }, "mmlu_high_school_physics": { "acc": true }, "mmlu_high_school_psychology": { "acc": true }, "mmlu_high_school_statistics": { "acc": true }, "mmlu_high_school_us_history": { "acc": true }, "mmlu_high_school_world_history": { "acc": true }, "mmlu_human_aging": { "acc": true }, "mmlu_human_sexuality": { "acc": true }, "mmlu_humanities": { "acc": true }, "mmlu_international_law": { "acc": true }, "mmlu_jurisprudence": { "acc": true }, "mmlu_logical_fallacies": { "acc": true }, "mmlu_machine_learning": { "acc": true }, "mmlu_management": { "acc": true }, "mmlu_marketing": { "acc": true }, "mmlu_medical_genetics": { "acc": true }, "mmlu_miscellaneous": { "acc": true }, "mmlu_moral_disputes": { "acc": true }, "mmlu_moral_scenarios": { "acc": true }, "mmlu_nutrition": { "acc": true }, "mmlu_other": { "acc": true }, "mmlu_philosophy": { "acc": true }, "mmlu_prehistory": { "acc": true }, "mmlu_professional_accounting": { "acc": true }, "mmlu_professional_law": { "acc": true }, "mmlu_professional_medicine": { "acc": true }, "mmlu_professional_psychology": { "acc": true }, "mmlu_public_relations": { "acc": true }, "mmlu_security_studies": { "acc": true }, "mmlu_social_sciences": { "acc": true }, "mmlu_sociology": { "acc": true }, "mmlu_stem": { "acc": true }, "mmlu_us_foreign_policy": { "acc": true }, "mmlu_virology": { "acc": true }, "mmlu_world_religions": { "acc": true } }, "n-samples": { "mmlu_elementary_mathematics": { "original": 378, "effective": 16 }, "mmlu_high_school_biology": { "original": 310, "effective": 16 }, "mmlu_electrical_engineering": { "original": 145, "effective": 16 }, "mmlu_high_school_mathematics": { "original": 270, "effective": 16 }, "mmlu_astronomy": { "original": 152, "effective": 16 }, "mmlu_machine_learning": { "original": 112, "effective": 16 }, "mmlu_college_chemistry": { "original": 100, "effective": 16 }, "mmlu_abstract_algebra": { "original": 100, "effective": 16 }, "mmlu_high_school_chemistry": { "original": 203, "effective": 16 }, "mmlu_computer_security": { "original": 100, "effective": 16 }, "mmlu_college_biology": { "original": 144, "effective": 16 }, "mmlu_high_school_computer_science": { "original": 100, "effective": 16 }, "mmlu_anatomy": { "original": 135, "effective": 16 }, "mmlu_college_mathematics": { "original": 100, "effective": 16 }, "mmlu_high_school_statistics": { "original": 216, "effective": 16 }, "mmlu_high_school_physics": { "original": 151, "effective": 16 }, "mmlu_conceptual_physics": { "original": 235, "effective": 16 }, "mmlu_college_computer_science": { "original": 100, "effective": 16 }, "mmlu_college_physics": { "original": 102, "effective": 16 }, "mmlu_professional_accounting": { "original": 282, "effective": 16 }, "mmlu_miscellaneous": { "original": 783, "effective": 16 }, "mmlu_marketing": { "original": 234, "effective": 16 }, "mmlu_business_ethics": { "original": 100, "effective": 16 }, "mmlu_human_aging": { "original": 223, "effective": 16 }, "mmlu_professional_medicine": { "original": 272, "effective": 16 }, "mmlu_nutrition": { "original": 306, "effective": 16 }, "mmlu_college_medicine": { "original": 173, "effective": 16 }, "mmlu_virology": { "original": 166, "effective": 16 }, "mmlu_medical_genetics": { "original": 100, "effective": 16 }, "mmlu_clinical_knowledge": { "original": 265, "effective": 16 }, "mmlu_global_facts": { "original": 100, "effective": 16 }, "mmlu_management": { "original": 103, "effective": 16 }, "mmlu_professional_psychology": { "original": 612, "effective": 16 }, "mmlu_high_school_psychology": { "original": 545, "effective": 16 }, "mmlu_econometrics": { "original": 114, "effective": 16 }, "mmlu_public_relations": { "original": 110, "effective": 16 }, "mmlu_us_foreign_policy": { "original": 100, "effective": 16 }, "mmlu_high_school_microeconomics": { "original": 238, "effective": 16 }, "mmlu_high_school_macroeconomics": { "original": 390, "effective": 16 }, "mmlu_sociology": { "original": 201, "effective": 16 }, "mmlu_high_school_geography": { "original": 198, "effective": 16 }, "mmlu_high_school_government_and_politics": { "original": 193, "effective": 16 }, "mmlu_security_studies": { "original": 245, "effective": 16 }, "mmlu_human_sexuality": { "original": 131, "effective": 16 }, "mmlu_moral_disputes": { "original": 346, "effective": 16 }, "mmlu_high_school_european_history": { "original": 165, "effective": 16 }, "mmlu_moral_scenarios": { "original": 895, "effective": 16 }, "mmlu_formal_logic": { "original": 126, "effective": 16 }, "mmlu_prehistory": { "original": 324, "effective": 16 }, "mmlu_professional_law": { "original": 1534, "effective": 16 }, "mmlu_world_religions": { "original": 171, "effective": 16 }, "mmlu_international_law": { "original": 121, "effective": 16 }, "mmlu_high_school_us_history": { "original": 204, "effective": 16 }, "mmlu_high_school_world_history": { "original": 237, "effective": 16 }, "mmlu_logical_fallacies": { "original": 163, "effective": 16 }, "mmlu_jurisprudence": { "original": 108, "effective": 16 }, "mmlu_philosophy": { "original": 311, "effective": 16 }, "ifeval": { "original": 541, "effective": 16 } }, "config": { "model": "vllm", "model_args": "pretrained=/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged,tokenizer=/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged,max_gen_toks=4096,max_model_len=8192,enable_prefix_caching=True,enable_chunked_prefill=True,tensor_parallel_size=8", "batch_size": "auto", "batch_sizes": [], "device": null, "use_cache": null, "limit": 16.0, "bootstrap_iters": 100000, "gen_kwargs": null, "random_seed": 0, "numpy_seed": 1234, "torch_seed": 1234, "fewshot_seed": 1234 }, "git_hash": "ff41a85", "date": 1752425792.898692, "pretty_env_info": "PyTorch version: 2.7.0+cu126\nIs debug build: False\nCUDA used to build PyTorch: 12.6\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.22.1\nLibc version: glibc-2.35\n\nPython version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1053-nvidia-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 11.5.119\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 43 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7742 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 0\nFrequency boost: enabled\nCPU max MHz: 2250.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4491.75\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (32 instances)\nNUMA node(s): 8\nNUMA node0 CPU(s): 0-15,128-143\nNUMA node1 CPU(s): 16-31,144-159\nNUMA node2 CPU(s): 32-47,160-175\nNUMA node3 CPU(s): 48-63,176-191\nNUMA node4 CPU(s): 64-79,192-207\nNUMA node5 CPU(s): 80-95,208-223\nNUMA node6 CPU(s): 96-111,224-239\nNUMA node7 CPU(s): 112-127,240-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==2.2.6\n[pip3] nvidia-cublas-cu12==12.6.4.1\n[pip3] nvidia-cuda-cupti-cu12==12.6.80\n[pip3] nvidia-cuda-nvrtc-cu12==12.6.77\n[pip3] nvidia-cuda-runtime-cu12==12.6.77\n[pip3] nvidia-cudnn-cu12==9.5.1.17\n[pip3] nvidia-cufft-cu12==11.3.0.4\n[pip3] nvidia-curand-cu12==10.3.7.77\n[pip3] nvidia-cusolver-cu12==11.7.1.2\n[pip3] nvidia-cusparse-cu12==12.5.4.2\n[pip3] nvidia-cusparselt-cu12==0.6.3\n[pip3] nvidia-nccl-cu12==2.26.2\n[pip3] nvidia-nvjitlink-cu12==12.6.85\n[pip3] nvidia-nvtx-cu12==12.6.77\n[pip3] torch==2.7.0\n[pip3] torchaudio==2.7.0\n[pip3] torchvision==0.22.0\n[pip3] triton==3.3.0\n[conda] blas 1.0 mkl \n[conda] cuda-cudart 12.1.105 0 nvidia\n[conda] cuda-cupti 12.1.105 0 nvidia\n[conda] cuda-libraries 12.1.0 0 nvidia\n[conda] cuda-nvrtc 12.1.105 0 nvidia\n[conda] cuda-nvtx 12.1.105 0 nvidia\n[conda] cuda-opencl 12.9.19 0 nvidia\n[conda] cuda-runtime 12.1.0 0 nvidia\n[conda] ffmpeg 4.3 hf484d3e_0 pytorch\n[conda] libcublas 12.1.0.26 0 nvidia\n[conda] libcufft 11.0.2.4 0 nvidia\n[conda] libcurand 10.3.10.19 0 nvidia\n[conda] libcusolver 11.4.4.55 0 nvidia\n[conda] libcusparse 12.0.2.55 0 nvidia\n[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch\n[conda] libnvjitlink 12.1.105 0 nvidia\n[conda] mkl 2023.1.0 h213fc3f_46344 \n[conda] mkl-service 2.4.0 py311h5eee18b_2 \n[conda] mkl_fft 1.3.11 py311h5eee18b_0 \n[conda] mkl_random 1.2.8 py311ha02d727_0 \n[conda] numpy 1.26.4 pypi_0 pypi\n[conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi\n[conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi\n[conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi\n[conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi\n[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi\n[conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi\n[conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi\n[conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi\n[conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi\n[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi\n[conda] nvidia-nvjitlink-cu12 12.9.41 pypi_0 pypi\n[conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi\n[conda] pytorch-cuda 12.1 ha16c6d3_6 pytorch\n[conda] pytorch-mutex 1.0 cuda pytorch\n[conda] torch 2.4.0 pypi_0 pypi\n[conda] torchaudio 2.5.1 py311_cu121 pytorch\n[conda] torchvision 0.19.0 pypi_0 pypi\n[conda] triton 3.0.0 pypi_0 pypi", "transformers_version": "4.53.0", "lm_eval_version": "0.4.9", "upper_git_hash": null, "tokenizer_pad_token": [ "", "11" ], "tokenizer_eos_token": [ "", "2" ], "tokenizer_bos_token": [ "", "1" ], "eot_token_id": 2, "max_length": 8192, "task_hashes": { "mmlu_elementary_mathematics": "cac3e448edd825647459c36f45c72ddca2182eb7bfe581d790dbb497cede64bf", "mmlu_high_school_biology": "3fb7646b3c9def6448c305937401933fb1ccb7a3750aaaf734765b66962264a8", "mmlu_electrical_engineering": "4696db1142e8bb63912cf56de182540aa886d09572df8cf6d5da37ff6d144516", "mmlu_high_school_mathematics": "dd6e0b3b2b92b9d0cd5afb9e3888a3e5c89b80b47c8620b7ff6b5664e08e6fdf", "mmlu_astronomy": "a7840590c8a89d853ebf69e7f8bc4cf2b7eb69b89ef2801f74232536870638fc", "mmlu_machine_learning": "e25a5b36ff8737d059df510dfac2e0083e1eccae98a49515ccc9d5fbf69bc8bc", "mmlu_college_chemistry": "596c0db68c89b2a413409b39dcdb5bb0f0e7cce78eaaf952e3ddb2f09c22def1", "mmlu_abstract_algebra": "1760b21fd56dfa201c3f46c9ae96522b7e0a5e33c1fc2bc341cbd422d207bd10", "mmlu_high_school_chemistry": "2b482509203f92c9adafbbcbdf6b5d32e746c55ccf5c1e772023a368ce4df531", "mmlu_computer_security": "a3be1d0d63e0b526e5ea59b37b14d1d3ad0aee73406ef2699f35ddea0c20cb6c", "mmlu_college_biology": "0ce125904aaef337576696045bff1b640d99bb11ccbd9321bf8f9c79966b2e8d", "mmlu_high_school_computer_science": "ccf3f4fa7a64240052e5d17ce0d73a02dc72a81cf3b762f3b81555fb9eed8598", "mmlu_anatomy": "7cdc7d2dee6647bc50e4ef4444cc0c703ff0c75eaff474fe1c377b17e48b9e8f", "mmlu_college_mathematics": "10707801abe204183d7003ea787824209b6539dbba9dc195a65a9e4b7507165f", "mmlu_high_school_statistics": "1b358c9b61563eda3ab0ccbfd51b14f07bbe71aaad21eac68378a82c7c7d147c", "mmlu_high_school_physics": "094b0c3b09a361853332905ce5bcdeaa27a59324e4fd9a26504c7b19c82a81ce", "mmlu_conceptual_physics": "666eb6ecf3b91eeb146659e30475a67e20af5414efc8220c6187b9d9cc28a369", "mmlu_college_computer_science": "a1aa72a3e01ad366b67d7ebed525ade4206eaff2c6381fc6050cd7685a2cfd9a", "mmlu_college_physics": "8672c562212c39fe69b873034389d76b75cc3d3b7f730df935419ea3607e527a", "mmlu_professional_accounting": "edddaf2b0b5498d62abecce2332fda8e9e107bb28d22fa27637381b8dd3c19f6", "mmlu_miscellaneous": "7ba50686b4ba6df6f2d8bb3ce367b65288f08615d147de92ce2e5495d96804f4", "mmlu_marketing": "d0af9d3d2eda28135469ce80800867c78538f9b51366c0b3cf5efd73cf8cfd15", "mmlu_business_ethics": "34f65c098a84c264b0de81a9379e456e5517b111feeadccddeb7f558cb2487fc", "mmlu_human_aging": "473a517fc08f3bc0d4128ee4fdb80b5c60c70c253d0241f2165bd9f9072515d9", "mmlu_professional_medicine": "fdaa3dc281e7e8f2a621f127cc0b61f6cf4f2905bdf6764b6f8bc67c10f368e9", "mmlu_nutrition": "bd4a0a9359f9ccac441169c8eca7f70663a725c8f0e7950e0a6bb55fd2613a2f", "mmlu_college_medicine": "3f88054d4d7028fc97247da43bd891e15c8f34c2546e616c8ce5589536cc1513", "mmlu_virology": "dfbaafba5f0c937e86674895beb0843b6f0bcb29aeb092f9606ed9b51750dccd", "mmlu_medical_genetics": "a9d74fd7757846dfe2052395438a04e3d56cef00ea85dbc17ba95a1be8bfbc7a", "mmlu_clinical_knowledge": "53127bc6fcfb7b737956616aa719dff9a91aecbc4dbf057275f5e6c9075614ab", "mmlu_global_facts": "2704929c2616e3d28049446f3e55a5b0693d3db0a04639e2e6931d400b73ddb5", "mmlu_management": "72e55f0fc994bdcab9637f77266bcd8e2257fa11ff18d8de11f10420c0d13cef", "mmlu_professional_psychology": "cf6ba9795e9c35c4164944b538b06bcb1b5fd62576f725bfd0d0d0e11bbc9c90", "mmlu_high_school_psychology": "d7baca339c8d39818c69cf69741440a5212150d8e68cdc0adf2118c6296929cf", "mmlu_econometrics": "5394e602a3460ea966b8643fa05686bc9632e45293ad9a09459ce8c0680b6f8b", "mmlu_public_relations": "38ff316870de2c090664e7aa56faa40394968a63906d218d6316ff62269057d9", "mmlu_us_foreign_policy": "53f21ad8af5210fcffe27ff6973c88fadf0786a3b4483c687b2d73dfdead268a", "mmlu_high_school_microeconomics": "b0102ca8a44b6ad80dc0c28dc2ec918c29a16fccec060aa10f9657061637a965", "mmlu_high_school_macroeconomics": "cb55006e034dcff2c156ba299b6e8070c9561f5ec924db94db0ccc88d64da196", "mmlu_sociology": "4265f0662f9e6df19005cf787f082a9da07cd01a73734ae7c9a884f289483ec8", "mmlu_high_school_geography": "a5db03886bd1d35f8bfc4fd0006bebcfa53e4399242facbd02397aad3de49d66", "mmlu_high_school_government_and_politics": "2f744868ef55512df499f2fb74cf0b669a025f2b9215d1d52fc10517aee0901a", "mmlu_security_studies": "855ad01a63496fa90b92f921e6121a5dc7b5e587cb5d5e9cb83ac4b328fda4ff", "mmlu_human_sexuality": "662c92104fad0625d2a7ecff56c772f82e36e0a79de27fb601c1201230cff256", "mmlu_moral_disputes": "397867ddeb953c9f52220268940892383d9d3e89557473a838653f2030db9201", "mmlu_high_school_european_history": "ccc6b22125efc74e3bc212fff35aa2e70f65860c6327e508285f9119cf250c05", "mmlu_moral_scenarios": "afc41c2e1274717c0eec6b773e8c245375967c35e45f476ce90c8222cdaef2f1", "mmlu_formal_logic": "1e3c3e734525ff4ee19578a18ae9e15a0184047943952f5117e638c947357285", "mmlu_prehistory": "19a95ac367b336762ec53cb6360fbaa24f534ef3ee94f188dfb05077613a42fd", "mmlu_professional_law": "4312b3bf29579626f568c61070e5823650fbc2f798205c62699ddf03a0ace2b8", "mmlu_world_religions": "f8933575ee37dca64ab9e29ee6de2cf322192c79ec8f823ea292aa2b53226d64", "mmlu_international_law": "848a6905ed42bd71baedcb49979a031686ecfa5f8e0a8e475380609b0eea67dc", "mmlu_high_school_us_history": "0b165de1f249e606810f4bfb22b43d75c3177e66e277d3d60ec410f9bcd683bf", "mmlu_high_school_world_history": "8be40d262d6b12f30cbd6dc7ebf3d72b04a8939414bb077285817e9d52999989", "mmlu_logical_fallacies": "4d29d91f40e565b5b3bf71e071c2af5ce59ddb721116fa26fe8b14666ad565a3", "mmlu_jurisprudence": "fa41a99aafcdd9381fd281d721d7d60bd9dea714c242a63ac01045f00af2ae3c", "mmlu_philosophy": "620490d4bbf6c3127f79c1f97b35aea67524c9825982b2a0a0a78fdf80017874", "ifeval": "a0944d2495291b61306df9a0bf350e60f502aa595fcc7123383a414265a514be" }, "model_source": "vllm", "model_name": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged", "model_name_sanitized": "__home__dgxuser__workspace__Mango__axolotl__24B-Retrain__merged", "system_instruction": null, "system_instruction_sha": null, "fewshot_as_multiturn": true, "chat_template": "{%- set today = strftime_now(\"%Y-%m-%d\") %}\n{%- set default_system_message = \"You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\\nYour knowledge base was last updated on 2023-10-01. The current date is \" + today + \".\\n\\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \\\"What are some good restaurants around me?\\\" => \\\"Where are you?\\\" or \\\"When is the next flight to Tokyo\\\" => \\\"Where do you travel from?\\\")\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n {%- if messages[0]['content'] is string %}\n {%- set system_message = messages[0]['content'] %}\n {%- else %}\n {%- set system_message = messages[0]['content'][0]['text'] %}\n {%- endif %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = default_system_message %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n {%- if message['role'] == 'user' %}\n {%- if message['content'] is string %}\n {{- '[INST]' + message['content'] + '[/INST]' }}\n {%- else %}\n {{- '[INST]' }}\n {%- for block in message['content'] %}\n {%- if block['type'] == 'text' %}\n {{- block['text'] }}\n {%- elif block['type'] in ['image', 'image_url'] %}\n {{- '[IMG]' }}\n {%- else %}\n {{- raise_exception('Only text and image blocks are supported in message content!') }}\n {%- endif %}\n {%- endfor %}\n {{- '[/INST]' }}\n {%- endif %}\n {%- elif message['role'] == 'system' %}\n {%- if message['content'] is string %}\n {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n {%- else %}\n {{- '[SYSTEM_PROMPT]' + message['content'][0]['text'] + '[/SYSTEM_PROMPT]' }}\n {%- endif %}\n {%- elif message['role'] == 'assistant' %}\n {%- if message['content'] is string %}\n {{- message['content'] + eos_token }}\n {%- else %}\n {{- message['content'][0]['text'] + eos_token }}\n {%- endif %}\n {%- else %}\n {{- raise_exception('Only user, system and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}", "chat_template_sha": "5f42291cf1b71a8eeae031eafd5bdc669586dbbbebba344a5d641322af152aa7", "start_time": 1331416.233509223, "end_time": 1331614.076114171, "total_evaluation_time_seconds": "197.8426049479749" }