File size: 608 Bytes
12d3b66
f36e595
8d3f5be
12d3b66
8d3f5be
12d3b66
 
8d3f5be
 
 
 
 
f36e595
 
8d3f5be
 
 
 
 
f36e595
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from transformers import pipeline, AutoTokenizer

# Load model
model_name = "DilipKY/my-text-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier = pipeline("text-classification", model=model_name, tokenizer=tokenizer)

# Label mapping (adjust if necessary)
label_map = {"LABEL_0": "NEGATIVE", "LABEL_1": "POSITIVE"}

# Test with input text
sample_text = "I love this movie!"
result = classifier(sample_text)

# Convert label
result[0]['label'] = label_map.get(result[0]['label'], result[0]['label'])

# Print the result
print("\n🔍 Sentiment Classification Result:")
print(result)