File size: 1,685 Bytes
7c22697 db8bf1e 71f09e6 7c22697 a92e917 db8bf1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
- watermarking
- latent-diffusion
- stable-signature
- watermark-extraction
- computer-vision
- research
- non-commercial
- pytorch
license: cc-by-nc-4.0
---
# **MsgExtractor - Stable Signature Decoder**
**A version of the Stable Signature decoder from the Meta AI project “Stable Signature: Rooting Watermarks in Latent Diffusion Models.”**
---
## Model Summary
* **Model Type:** Custom PyTorch Model
* **Task:** Watermark extraction from watermarked images
* **Source:** Derived from [facebookresearch/stable_signature](https://github.com/facebookresearch/stable_signature)
* **License:** **CC-BY-NC 4.0** (Attribution + Non-Commercial)
* **Framework:** PyTorch
* **Weights:** Ported from the original TorchScript decoder
* **Architecture:**
* `HiddenDecoder(num_blocks, num_bits, channels, redundancy)`
* `MsgExtractor(hidden_decoder, in_features, out_features)`
* **Status:** Research-only, non-commercial
### **Load the model**
```python
from modeling_msg_extractor import MsgExtractor
import torch
model = MsgExtractor.from_pretrained("ESmike/StableSignatureDecoder")
model.eval()
img = torch.randn(1, 3, 256, 256) # example input
bits = model(img)
print(bits.shape)
```
### Citation
If you use this model, you must cite the original Stable Signature paper:
```bibtex
@inproceedings{Fernandez2023StableSignature,
title={The Stable Signature Rooting Watermarks in Latent Diffusion Models},
author={Fernandez, Pierre and Chappelier, Vivien and Nguyen-Hong, Son},
year={2023},
institution={Meta AI},
note={Original implementation at https://github.com/facebookresearch/stable_signature}
}
```
|