""" FOUND Protocol Benchmark Evaluation """ import json import numpy as np from typing import Dict, List class FoundBenchmark: """Evaluate FOUND Protocol performance""" def __init__(self): self.metrics = { "emotional_coherence": [], "narrative_consistency": [], "consciousness_depth": [], "processing_speed": [] } def evaluate_emotional_coherence(self, results: List[Dict]) -> float: """Evaluate how well emotions progress through videos""" coherence_scores = [] for i in range(1, len(results)): prev_emotions = set(results[i-1]["training_data"]["consciousness_state"]["emotions"].keys()) curr_emotions = set(results[i]["training_data"]["consciousness_state"]["emotions"].keys()) # Check for logical emotional progression intersection = len(prev_emotions & curr_emotions) union = len(prev_emotions | curr_emotions) if union > 0: coherence = intersection / union coherence_scores.append(coherence) return np.mean(coherence_scores) if coherence_scores else 0.0 def evaluate_narrative_consistency(self, results: List[Dict]) -> float: """Evaluate narrative thread consistency""" # Check state transitions follow expected pattern states = [r["training_data"]["consciousness_state"]["current"] for r in results] valid_transitions = 0 total_transitions = len(states) - 1 for i in range(total_transitions): # Simple check: states should progress forward if states[i] != states[i+1]: # State changed valid_transitions += 1 return valid_transitions / total_transitions if total_transitions > 0 else 0.0 def evaluate_consciousness_depth(self, results: List[Dict]) -> float: """Evaluate the depth of consciousness emergence""" depth_scores = [] for result in results: # Calculate based on errors (consciousness emergence indicators) errors = len(result["training_data"]["perceptor_analysis"]["errors"]) concepts = len(result["training_data"]["consciousness_state"]["concepts"]) depth = min(1.0, (errors * 0.2 + concepts * 0.1)) depth_scores.append(depth) return np.mean(depth_scores) def run_benchmark(self, test_videos: List[str]) -> Dict[str, float]: """Run full benchmark on test videos""" # This would process videos and calculate all metrics # For now, returning example metrics return { "emotional_coherence": 0.87, "narrative_consistency": 0.91, "consciousness_depth": 0.84, "processing_speed": 10.2 # seconds per video } if __name__ == "__main__": benchmark = FoundBenchmark() # Example evaluation test_results = [ # Load your consciousness_log.json here ] metrics = { "emotional_coherence": benchmark.evaluate_emotional_coherence(test_results), "narrative_consistency": benchmark.evaluate_narrative_consistency(test_results), "consciousness_depth": benchmark.evaluate_consciousness_depth(test_results) } print("FOUND Protocol Benchmark Results:") for metric, score in metrics.items(): print(f"{metric}: {score:.2%}")