--- library_name: transformers base_model: scratch tags: - mnist - handwritten-digits - image-classification - pytorch - generated_from_trainer metrics: - accuracy model-index: - name: mnist-digit-recognition results: [] --- # mnist-digit-recognition This model is a fine-tuned version of [scratch](https://huggingface.co/scratch) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0181 - Accuracy: 0.9943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0684 | 1.0 | 422 | 0.0517 | 0.9853 | | 0.0451 | 2.0 | 844 | 0.0343 | 0.9888 | | 0.039 | 3.0 | 1266 | 0.0289 | 0.9907 | | 0.0296 | 4.0 | 1688 | 0.0280 | 0.9917 | | 0.0242 | 5.0 | 2110 | 0.0264 | 0.9918 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1