mstatt commited on
Commit
ea798c4
·
verified ·
1 Parent(s): ef378be

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md CHANGED
@@ -58,6 +58,111 @@ model.config.id2label[predicted_label]
58
  ```
59
 
60
  <hr>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  ### Limitations
63
  - **Specialized Task Fine-Tuning**: While the model is adept at NSFW image classification, its performance may vary when applied to other tasks.
 
58
  ```
59
 
60
  <hr>
61
+ Run Yolo Version
62
+ ``` markdown
63
+
64
+ import os
65
+ import matplotlib.pyplot as plt
66
+ from PIL import Image
67
+ import numpy as np
68
+ import onnxruntime as ort
69
+ import json # Added import for json
70
+
71
+ # Predict using YOLOv9 model
72
+ def predict_with_yolov9(image_path, model_path, labels_path, input_size):
73
+ """
74
+ Run inference using the converted YOLOv9 model on a single image.
75
+
76
+ Args:
77
+ image_path (str): Path to the input image file.
78
+ model_path (str): Path to the ONNX model file.
79
+ labels_path (str): Path to the JSON file containing class labels.
80
+ input_size (tuple): The expected input size (height, width) for the model.
81
+
82
+ Returns:
83
+ str: The predicted class label.
84
+ PIL.Image.Image: The original loaded image.
85
+ """
86
+ def load_json(file_path):
87
+ with open(file_path, "r") as f:
88
+ return json.load(f)
89
+
90
+ # Load labels
91
+ labels = load_json(labels_path)
92
+
93
+ # Preprocess image
94
+ original_image = Image.open(image_path).convert("RGB")
95
+ image_resized = original_image.resize(input_size, Image.Resampling.BILINEAR)
96
+ image_np = np.array(image_resized, dtype=np.float32) / 255.0
97
+ image_np = np.transpose(image_np, (2, 0, 1)) # [C, H, W]
98
+ input_tensor = np.expand_dims(image_np, axis=0).astype(np.float32)
99
+
100
+ # Load YOLOv9 model
101
+ session = ort.InferenceSession(model_path)
102
+ input_name = session.get_inputs()[0].name
103
+ output_name = session.get_outputs()[0].name # Assuming classification output
104
+
105
+ # Run inference
106
+ outputs = session.run([output_name], {input_name: input_tensor})
107
+ predictions = outputs[0]
108
+
109
+ # Postprocess predictions (assuming classification output)
110
+ # Adapt this section if your model output is different (e.g., detection boxes)
111
+ predicted_index = np.argmax(predictions)
112
+ predicted_label = labels[str(predicted_index)] # Assumes labels are indexed by string numbers
113
+
114
+ return predicted_label, original_image
115
+
116
+ # Display prediction for a single image
117
+ def display_single_prediction(image_path, model_path, labels_path, input_size):
118
+ """
119
+ Predicts the class for a single image and displays the image with its prediction.
120
+
121
+ Args:
122
+ image_path (str): Path to the input image file.
123
+ model_path (str): Path to the ONNX model file.
124
+ labels_path (str): Path to the JSON file containing class labels.
125
+ input_size (tuple): The expected input size (height, width) for the model.
126
+ """
127
+ try:
128
+ # Run prediction
129
+ prediction, img = predict_with_yolov9(image_path, model_path, labels_path, input_size)
130
+
131
+ # Display image and prediction
132
+ fig, ax = plt.subplots(1, 1, figsize=(8, 8)) # Create a single plot
133
+ ax.imshow(img)
134
+ ax.set_title(f"Prediction: {prediction}", fontsize=14)
135
+ ax.axis("off") # Hide axes ticks and labels
136
+
137
+ plt.tight_layout()
138
+ plt.show()
139
+
140
+ except FileNotFoundError:
141
+ print(f"Error: Image file not found at {image_path}")
142
+ except Exception as e:
143
+ print(f"An error occurred: {e}")
144
+
145
+
146
+ # --- Main Execution ---
147
+
148
+ # Paths and parameters - **MODIFY THESE**
149
+ single_image_path = "path/to/your/single_image.jpg" # <--- Replace with the actual path to your image file
150
+ model_path = "path/to/your/yolov9_model.onnx" # <--- Replace with the actual path to your ONNX model
151
+ labels_path = "path/to/your/labels.json" # <--- Replace with the actual path to your labels JSON file
152
+ input_size = (224, 224) # Standard input size, adjust if your model differs
153
+
154
+ # Check if the image file exists before proceeding (optional but recommended)
155
+ if os.path.exists(single_image_path):
156
+ # Run prediction and display for the single image
157
+ display_single_prediction(single_image_path, model_path, labels_path, input_size)
158
+ else:
159
+ print(f"Error: The specified image file does not exist: {single_image_path}")
160
+
161
+ ```
162
+
163
+ <hr>
164
+
165
+
166
 
167
  ### Limitations
168
  - **Specialized Task Fine-Tuning**: While the model is adept at NSFW image classification, its performance may vary when applied to other tasks.