--- license: mit language: - en base_model: - deepseek-ai/deepseek-coder-6.7b-instruct tags: - code - Festi --- # Festi Coder LoRA 2025-06 This is a LoRA fine-tuned version of `deepseek-coder-6.7b-instruct`, optimized for generating and understanding code built on the [Festi Framework](https://festi.io). The model is designed to assist with plugin generation, trait and service scaffolding, and other automation tasks relevant to the Festi ecosystem. --- ## Model Details ### Model Description - **Developed by:** Festi - **Model type:** Causal Language Model with LoRA fine-tuning - **Base model:** [`deepseek-coder-6.7b-instruct`](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) - **Language(s):** English, PHP (Festi-specific syntax and DSL) - **License:** [To be specified — likely mirrors base model] - **Fine-tuned with:** PEFT + LoRA --- ## Uses ### Direct Use This model is intended for developers using the Festi Framework who want to: - Generate new plugins (e.g., SubscribePlugin) - Scaffold services, traits, CLI commands - Complete and explain Festi-specific PHP code ### Out-of-Scope Use - General NLP tasks (e.g., chat, summarization) - Non-Festi PHP applications - High-stakes decision making --- ## Bias, Risks, and Limitations This model is domain-specific and not suitable for general-purpose programming. Generated code may require manual review, especially in production settings. It inherits any limitations and biases from its base model (`deepseek-coder-6.7b-instruct`). ### Recommendations - Always review generated code. - Do not expose model outputs directly to end-users without validation. --- ## How to Get Started with the Model ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig peft_model_id = "Festi/festi-coder-lora-2025-06" base_model = "deepseek-ai/deepseek-coder-6.7b-instruct" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForCausalLM.from_pretrained(base_model) model = PeftModel.from_pretrained(model, peft_model_id) prompt = "<|user|>\nCreate a plugin to collect emails for a newsletter subscription.\n<|assistant|>\n" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=256) print(tokenizer.decode(outputs[0], skip_special_tokens=True))