YummyYum commited on
Commit
3fa92c9
·
verified ·
1 Parent(s): 3285fb7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -298
README.md CHANGED
@@ -1,350 +1,152 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- license_link: https://huggingface.co/Qwen/Qwen3-Next-80B-A3B-Instruct/blob/main/LICENSE
5
- pipeline_tag: text-generation
6
- ---
7
-
8
- # Qwen3-Next-80B-A3B-Instruct
9
- <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
10
- <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
11
- </a>
12
-
13
- Over the past few months, we have observed increasingly clear trends toward scaling both total parameters and context lengths in the pursuit of more powerful and agentic artificial intelligence (AI).
14
- We are excited to share our latest advancements in addressing these demands, centered on improving scaling efficiency through innovative model architecture.
15
- We call this next-generation foundation models **Qwen3-Next**.
16
-
17
- ## Highlights
18
-
19
- **Qwen3-Next-80B-A3B** is the first installment in the Qwen3-Next series and features the following key enchancements:
20
- - **Hybrid Attention**: Replaces standard attention with the combination of **Gated DeltaNet** and **Gated Attention**, enabling efficient context modeling for ultra-long context length.
21
- - **High-Sparsity Mixture-of-Experts (MoE)**: Achieves an extreme low activation ratio in MoE layers, drastically reducing FLOPs per token while preserving model capacity.
22
- - **Stability Optimizations**: Includes techniques such as **zero-centered and weight-decayed layernorm**, and other stabilizing enhancements for robust pre-training and post-training.
23
- - **Multi-Token Prediction (MTP)**: Boosts pretraining model performance and accelerates inference.
24
-
25
- We are seeing strong performance in terms of both parameter efficiency and inference speed for Qwen3-Next-80B-A3B:
26
- - Qwen3-Next-80B-A3B-Base outperforms Qwen3-32B-Base on downstream tasks with 10% of the total training cost and with 10 times inference throughput for context over 32K tokens.
27
- - Qwen3-Next-80B-A3B-Instruct performs on par with Qwen3-235B-A22B-Instruct-2507 on certain benchmarks, while demonstrating significant advantages in handling ultra-long-context tasks up to 256K tokens.
28
-
29
- ![Qwen3-Next-80B-A3B-Instruct Benchmark Comparison](https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-Next/Qwen3-Next-80B-A3B-Instruct.001.jpeg)
30
-
31
- For more details, please refer to our blog post [Qwen3-Next](https://qwenlm.github.io/blog/qwen3_next/).
32
-
33
- ## Model Overview
34
-
35
- > [!Note]
36
- > **Qwen3-Next-80B-A3B-Instruct** supports only instruct (non-thinking) mode and does not generate ``<think></think>`` blocks in its output.
37
-
38
- **Qwen3-Next-80B-A3B-Instruct** has the following features:
39
- - Type: Causal Language Models
40
- - Training Stage: Pretraining (15T tokens) & Post-training
41
- - Number of Parameters: 80B in total and 3B activated
42
- - Number of Paramaters (Non-Embedding): 79B
43
- - Number of Layers: 48
44
- - Hidden Dimension: 2048
45
- - Hybrid Layout: 12 \* (3 \* (Gated DeltaNet -> MoE) -> (Gated Attention -> MoE))
46
- - Gated Attention:
47
- - Number of Attention Heads: 16 for Q and 2 for KV
48
- - Head Dimension: 256
49
- - Rotary Position Embedding Dimension: 64
50
- - Gated DeltaNet:
51
- - Number of Linear Attention Heads: 32 for V and 16 for QK
52
- - Head Dimension: 128
53
- - Mixture of Experts:
54
- - Number of Experts: 512
55
- - Number of Activated Experts: 10
56
- - Number of Shared Experts: 1
57
- - Expert Intermediate Dimension: 512
58
- - Context Length: 262,144 natively and extensible up to 1,010,000 tokens
59
-
60
- <img src="https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-Next/model_architecture.png" height="384px" title="Qwen3-Next Model Architecture" />
61
-
62
-
63
- ## Performance
64
-
65
- | | Qwen3-30B-A3B-Instruct-2507 | Qwen3-32B Non-Thinking | Qwen3-235B-A22B-Instruct-2507 | Qwen3-Next-80B-A3B-Instruct |
66
- |--- | --- | --- | --- | --- |
67
- | **Knowledge** | | | | |
68
- | MMLU-Pro | 78.4 | 71.9 | **83.0** | 80.6 |
69
- | MMLU-Redux | 89.3 | 85.7 | **93.1** | 90.9 |
70
- | GPQA | 70.4 | 54.6 | **77.5** | 72.9 |
71
- | SuperGPQA | 53.4 | 43.2 | **62.6** | 58.8 |
72
- | **Reasoning** | | | | |
73
- | AIME25 | 61.3 | 20.2 | **70.3** | 69.5 |
74
- | HMMT25 | 43.0 | 9.8 | **55.4** | 54.1 |
75
- | LiveBench 20241125 | 69.0 | 59.8 | 75.4 | **75.8** |
76
- | **Coding** | | | | |
77
- | LiveCodeBench v6 (25.02-25.05) | 43.2 | 29.1 | 51.8 | **56.6** |
78
- | MultiPL-E | 83.8 | 76.9 | **87.9** | 87.8 |
79
- | Aider-Polyglot | 35.6 | 40.0 | **57.3** | 49.8 |
80
- | **Alignment** | | | | |
81
- | IFEval | 84.7 | 83.2 | **88.7** | 87.6 |
82
- | Arena-Hard v2* | 69.0 | 34.1 | 79.2 | **82.7** |
83
- | Creative Writing v3 | 86.0 | 78.3 | **87.5** | 85.3 |
84
- | WritingBench | 85.5 | 75.4 | 85.2 | **87.3** |
85
- | **Agent** | | | | |
86
- | BFCL-v3 | 65.1 | 63.0 | **70.9** | 70.3 |
87
- | TAU1-Retail | 59.1 | 40.1 | **71.3** | 60.9 |
88
- | TAU1-Airline | 40.0 | 17.0 | **44.0** | 44.0 |
89
- | TAU2-Retail | 57.0 | 48.8 | **74.6** | 57.3 |
90
- | TAU2-Airline | 38.0 | 24.0 | **50.0** | 45.5 |
91
- | TAU2-Telecom | 12.3 | 24.6 | **32.5** | 13.2 |
92
- | **Multilingualism** | | | | |
93
- | MultiIF | 67.9 | 70.7 | **77.5** | 75.8 |
94
- | MMLU-ProX | 72.0 | 69.3 | **79.4** | 76.7 |
95
- | INCLUDE | 71.9 | 70.9 | **79.5** | 78.9 |
96
- | PolyMATH | 43.1 | 22.5 | **50.2** | 45.9 |
97
-
98
- *: For reproducibility, we report the win rates evaluated by GPT-4.1.
99
-
100
- ## Quickstart
101
-
102
- The code for Qwen3-Next has been merged into the main branch of Hugging Face `transformers`.
103
-
104
- ```shell
105
- pip install git+https://github.com/huggingface/transformers.git@main
106
- ```
107
 
108
- With earlier versions, you will encounter the following error:
109
- ```
110
- KeyError: 'qwen3_next'
111
- ```
112
 
113
- The following contains a code snippet illustrating how to use the model generate content based on given inputs.
114
- ```python
115
- from transformers import AutoModelForCausalLM, AutoTokenizer
116
 
117
- model_name = "Qwen/Qwen3-Next-80B-A3B-Instruct"
118
 
119
- # load the tokenizer and the model
120
- tokenizer = AutoTokenizer.from_pretrained(model_name)
121
- model = AutoModelForCausalLM.from_pretrained(
122
- model_name,
123
- dtype="auto",
124
- device_map="auto",
125
- )
126
 
127
- # prepare the model input
128
- prompt = "Give me a short introduction to large language model."
129
- messages = [
130
- {"role": "user", "content": prompt},
131
- ]
132
- text = tokenizer.apply_chat_template(
133
- messages,
134
- tokenize=False,
135
- add_generation_prompt=True,
136
- )
137
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
138
 
139
- # conduct text completion
140
- generated_ids = model.generate(
141
- **model_inputs,
142
- max_new_tokens=16384,
143
- )
144
- output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
145
 
146
- content = tokenizer.decode(output_ids, skip_special_tokens=True)
147
 
148
- print("content:", content)
149
- ```
150
 
151
- > [!Note]
152
- > Multi-Token Prediction (MTP) is not generally available in Hugging Face Transformers.
153
 
154
- > [!Note]
155
- > The efficiency or throughput improvement depends highly on the implementation.
156
- > It is recommended to adopt a dedicated inference framework, e.g., SGLang and vLLM, for inference tasks.
157
 
158
- > [!Tip]
159
- > Depending on the inference settings, you may observe better efficiency with [`flash-linear-attention`](https://github.com/fla-org/flash-linear-attention#installation) and [`causal-conv1d`](https://github.com/Dao-AILab/causal-conv1d).
160
- > See the above links for detailed instructions and requirements.
161
 
 
162
 
163
- ## Deployment
 
 
164
 
165
- For deployment, you can use the latest `sglang` or `vllm` to create an OpenAI-compatible API endpoint.
166
 
167
- ### SGLang
 
 
168
 
169
- [SGLang](https://github.com/sgl-project/sglang) is a fast serving framework for large language models and vision language models.
170
- SGLang could be used to launch a server with OpenAI-compatible API service.
171
 
172
- SGLang has supported Qwen3-Next in its `main` branch, which can be installed from source:
173
- ```shell
174
- pip install 'sglang[all] @ git+https://github.com/sgl-project/sglang.git@main#subdirectory=python'
175
- ```
176
 
177
- The following command can be used to create an API endpoint at `http://localhost:30000/v1` with maximum context length 256K tokens using tensor parallel on 4 GPUs.
178
- ```shell
179
- SGLANG_ALLOW_OVERWRITE_LONGER_CONTEXT_LEN=1 python -m sglang.launch_server --model-path Qwen/Qwen3-Next-80B-A3B-Instruct --port 30000 --tp-size 4 --context-length 262144 --mem-fraction-static 0.8
180
- ```
 
 
 
181
 
182
- The following command is recommended for MTP with the rest settings the same as above:
183
- ```shell
184
- SGLANG_ALLOW_OVERWRITE_LONGER_CONTEXT_LEN=1 python -m sglang.launch_server --model-path Qwen/Qwen3-Next-80B-A3B-Instruct --port 30000 --tp-size 4 --context-length 262144 --mem-fraction-static 0.8 --speculative-algo NEXTN --speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4
185
- ```
186
 
187
- > [!Note]
188
- > The environment variable `SGLANG_ALLOW_OVERWRITE_LONGER_CONTEXT_LEN=1` is required at the moment.
189
 
190
- > [!Note]
191
- > The default context length is 256K. Consider reducing the context length to a smaller value, e.g., `32768`, if the server fail to start.
 
 
 
 
192
 
193
- ### vLLM
194
 
195
- [vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs.
196
- vLLM could be used to launch a server with OpenAI-compatible API service.
197
 
198
- vLLM has supported Qwen3-Next in its `main` branch, which can be installed from source:
199
- ```shell
200
- pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
201
- ```
202
 
203
- The following command can be used to create an API endpoint at `http://localhost:8000/v1` with maximum context length 256K tokens using tensor parallel on 4 GPUs.
204
- ```shell
205
- VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 vllm serve Qwen/Qwen3-Next-80B-A3B-Instruct --port 8000 --tensor-parallel-size 4 --max-model-len 262144
206
  ```
207
 
208
- The following command is recommended for MTP with the rest settings the same as above:
209
- ```shell
210
- VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 vllm serve Qwen/Qwen3-Next-80B-A3B-Instruct --port 8000 --tensor-parallel-size 4 --max-model-len 262144 --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'
211
- ```
212
 
213
- > [!Note]
214
- > The environment variable `VLLM_ALLOW_LONG_MAX_MODEL_LEN=1` is required at the moment.
215
-
216
- > [!Note]
217
- > The default context length is 256K. Consider reducing the context length to a smaller value, e.g., `32768`, if the server fail to start.
218
-
219
- ## Agentic Use
220
-
221
- Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
222
-
223
- To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
224
- ```python
225
- from qwen_agent.agents import Assistant
226
-
227
- # Define LLM
228
- llm_cfg = {
229
- 'model': 'Qwen3-Next-80B-A3B-Instruct',
230
-
231
- # Use a custom endpoint compatible with OpenAI API:
232
- 'model_server': 'http://localhost:8000/v1', # api_base
233
- 'api_key': 'EMPTY',
234
- }
235
-
236
- # Define Tools
237
- tools = [
238
- {'mcpServers': { # You can specify the MCP configuration file
239
- 'time': {
240
- 'command': 'uvx',
241
- 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
242
- },
243
- "fetch": {
244
- "command": "uvx",
245
- "args": ["mcp-server-fetch"]
246
- }
247
- }
248
- },
249
- 'code_interpreter', # Built-in tools
250
- ]
251
 
252
- # Define Agent
253
- bot = Assistant(llm=llm_cfg, function_list=tools)
254
 
255
- # Streaming generation
256
- messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
257
- for responses in bot.run(messages=messages):
258
- pass
259
- print(responses)
260
  ```
261
 
 
262
 
263
- ## Processing Ultra-Long Texts
 
264
 
265
- Qwen3-Next natively supports context lengths of up to 262,144 tokens.
266
- For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively.
267
- We have validated the model's performance on context lengths of up to 1 million tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
268
 
269
- YaRN is currently supported by several inference frameworks, e.g., `transformers`, `vllm` and `sglang`.
270
- In general, there are two approaches to enabling YaRN for supported frameworks:
271
 
272
- - Modifying the model files:
273
- In the `config.json` file, add the `rope_scaling` fields:
274
- ```json
275
- {
276
- ...,
277
- "rope_scaling": {
278
- "rope_type": "yarn",
279
- "factor": 4.0,
280
- "original_max_position_embeddings": 262144
281
- }
282
- }
283
- ```
284
 
285
- - Passing command line arguments:
286
 
287
- For `vllm`, you can use
288
- ```shell
289
- VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":262144}' --max-model-len 1010000
290
- ```
 
 
 
 
 
 
 
 
 
 
 
 
291
 
292
- For `sglang`, you can use
293
- ```shell
294
- SGLANG_ALLOW_OVERWRITE_LONGER_CONTEXT_LEN=1 python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":262144}}' --context-length 1010000
295
- ```
296
 
297
- > [!NOTE]
298
- > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
299
- > We advise adding the `rope_scaling` configuration only when processing long contexts is required.
300
- > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 524,288 tokens, it would be better to set `factor` as 2.0.
301
 
302
- #### Long-Context Performance
303
 
304
- We test the model on an 1M version of the [RULER](https://arxiv.org/abs/2404.06654) benchmark.
 
 
305
 
306
- | Model Name | Acc avg | 4k | 8k | 16k | 32k | 64k | 96k | 128k | 192k | 256k | 384k | 512k | 640k | 768k | 896k | 1000k |
307
- |---------------------------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
308
- | Qwen3-30B-A3B-Instruct-2507 | 86.8 | 98.0 | 96.7 | 96.9 | 97.2 | 93.4 | 91.0 | 89.1 | 89.8 | 82.5 | 83.6 | 78.4 | 79.7 | 77.6 | 75.7 | 72.8 |
309
- | Qwen3-235B-A22B-Instruct-2507 | 92.5 | 98.5 | 97.6 | 96.9 | 97.3 | 95.8 | 94.9 | 93.9 | 94.5 | 91.0 | 92.2 | 90.9 | 87.8 | 84.8 | 86.5 | 84.5 |
310
- | Qwen3-Next-80B-A3B-Instruct | 91.8 | 98.5 | 99.0 | 98.0 | 98.7 | 97.6 | 95.0 | 96.0 | 94.0 | 93.5 | 91.7 | 86.9 | 85.5 | 81.7 | 80.3 | 80.3 |
311
 
312
- * Qwen3-Next are evaluated with YaRN enabled. Qwen3-2507 models are evaluated with Dual Chunk Attention enabled.
313
- * Since the evaluation is time-consuming, we use 260 samples for each length (13 sub-tasks, 20 samples for each).
 
 
314
 
315
- ## Best Practices
316
 
317
- To achieve optimal performance, we recommend the following settings:
 
 
 
318
 
319
- 1. **Sampling Parameters**:
320
- - We suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
321
- - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
322
 
323
- 2. **Adequate Output Length**: We recommend using an output length of 16,384 tokens for most queries, which is adequate for instruct models.
324
 
325
- 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
326
- - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
327
- - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
 
328
 
329
- ### Citation
330
 
331
- If you find our work helpful, feel free to give us a cite.
332
 
333
- ```
334
- @misc{qwen3technicalreport,
335
- title={Qwen3 Technical Report},
336
- author={Qwen Team},
337
- year={2025},
338
- eprint={2505.09388},
339
- archivePrefix={arXiv},
340
- primaryClass={cs.CL},
341
- url={https://arxiv.org/abs/2505.09388},
342
- }
343
-
344
- @article{qwen2.5-1m,
345
- title={Qwen2.5-1M Technical Report},
346
- author={An Yang and Bowen Yu and Chengyuan Li and Dayiheng Liu and Fei Huang and Haoyan Huang and Jiandong Jiang and Jianhong Tu and Jianwei Zhang and Jingren Zhou and Junyang Lin and Kai Dang and Kexin Yang and Le Yu and Mei Li and Minmin Sun and Qin Zhu and Rui Men and Tao He and Weijia Xu and Wenbiao Yin and Wenyuan Yu and Xiafei Qiu and Xingzhang Ren and Xinlong Yang and Yong Li and Zhiying Xu and Zipeng Zhang},
347
- journal={arXiv preprint arXiv:2501.15383},
348
- year={2025}
349
- }
350
- ```
 
1
+ # Introduction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ **FlagOS** is a unified heterogeneous computing software stack for large models, co-developed with leading global chip manufacturers. With core technologies such as the **FlagScale** distributed training/inference framework, **FlagGems** universal operator library, **FlagCX** communication library, and **FlagTree** unified compiler, the **FlagRelease** platform leverages the FlagOS stack to automatically produce and release various combinations of <chip + open-source model>. This enables efficient and automated model migration across diverse chips, opening a new chapter for large model deployment and application.
 
 
 
4
 
5
+ Based on this, the **Qwen3-Next-80B-A3B-Instruct-FlagOS** model is adapted for the Nvidia chip using the FlagOS software stack, enabling:
 
 
6
 
7
+ ### Integrated Deployment
8
 
9
+ - Deep integration with the open-source [FlagScale framework](https://github.com/FlagOpen/FlagScale)
10
+ - Out-of-the-box inference scripts with pre-configured hardware and software parameters
11
+ - Released **FlagOS** container image supporting deployment within minutes
 
 
 
 
12
 
13
+ ### Consistency Validation
 
 
 
 
 
 
 
 
 
 
14
 
15
+ - Rigorously evaluated through benchmark testing: Performance and results from the FlagOS software stack are compared against native stacks on multiple public.
 
 
 
 
 
16
 
17
+ # Technical Overview
18
 
19
+ ## **FlagScale Distributed Training and Inference Framework**
 
20
 
21
+ FlagScale is an end-to-end framework for large models across heterogeneous computing resources, maximizing computational efficiency and ensuring model validity through core technologies. Its key advantages include:
 
22
 
23
+ - **Unified Deployment Interface:** Standardized command-line tools support one-click service deployment across multiple hardware platforms, significantly reducing adaptation costs in heterogeneous environments.
24
+ - **Intelligent Parallel Optimization:** Automatically generates optimal distributed parallel strategies based on chip computing characteristics, achieving dynamic load balancing of computation/communication resources.
25
+ - **Seamless Operator Switching:** Deep integration with the FlagGems operator library allows high-performance operators to be invoked via environment variables without modifying model code.
26
 
27
+ ## **FlagGems Universal Large-Model Operator Library**
 
 
28
 
29
+ FlagGems is a Triton-based, cross-architecture operator library collaboratively developed with industry partners. Its core strengths include:
30
 
31
+ - **Full-stack Coverage**: Over 100 operators, with a broader range of operator types than competing libraries.
32
+ - **Ecosystem Compatibility**: Supports 7 accelerator backends. Ongoing optimizations have significantly improved performance.
33
+ - **High Efficiency**: Employs unique code generation and runtime optimization techniques for faster secondary development and better runtime performance compared to alternatives.
34
 
35
+ ## **FlagEval Evaluation Framework**
36
 
37
+ FlagEval (Libra)** is a comprehensive evaluation system and open platform for large models launched in 2023. It aims to establish scientific, fair, and open benchmarks, methodologies, and tools to help researchers assess model and training algorithm performance. It features:
38
+ - **Multi-dimensional Evaluation**: Supports 800+ model evaluations across NLP, CV, Audio, and Multimodal fields, covering 20+ downstream tasks including language understanding and image-text generation.
39
+ - **Industry-Grade Use Cases**: Has completed horizontal evaluations of mainstream large models, providing authoritative benchmarks for chip-model performance validation.
40
 
41
+ # Evaluation Results
 
42
 
43
+ ## Benchmark Result
 
 
 
44
 
45
+ | Metrics | Qwen3-Next-80B-A3B-Instruct-H100-CUDA | Qwen3-Next-80B-A3B-Instruct-FlagOS |
46
+ |-------------------|--------------------------|-----------------------------|
47
+ | AIME_0fewshot_@avg1 | 0.800 | 0.800 |
48
+ | GPQA_0fewshot_@avg1 | 0.643 | 0.634 |
49
+ | LiveBench-0fewshot_@avg1 | 0.652 | 0.640 |
50
+ | MMLU_5fewshot_@avg1 | 0.715 | 0.710 |
51
+ | MUSR_0fewshot_@avg | 0.532 | 0.532 |
52
 
53
+ # User Guide
 
 
 
54
 
55
+ **Environment Setup**
 
56
 
57
+ | Item | Version |
58
+ | ------------- | ------------------------------------------------------------ |
59
+ | Docker Version | Docker version 28.1.0, build 4d8c241 |
60
+ | Operating System | Ubuntu 22.04.5 LTS |
61
+ | FlagScale | Version: 0.8.0 |
62
+ | FlagGems | Version: 3.0 |
63
 
64
+ ## Operation Steps
65
 
66
+ ### Download Open-source Model Weights
 
67
 
68
+ ```bash
69
+ pip install modelscope
70
+ modelscope download --model Qwen/Qwen3-Next-80B-A3B-Instruct --local_dir /share/Qwen3-Next-80B-A3B-Instruct
 
71
 
 
 
 
72
  ```
73
 
74
+ ### Download FlagOS Image
 
 
 
75
 
76
+ ```bash
77
+ docker pull harbor.baai.ac.cn/flagrelease-public/flagrelease_nvidia_qwen3next
78
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ ### Start the inference service
 
81
 
82
+ ```bash
83
+ #Container Startup
84
+ docker run --rm --init --detach --net=host --uts=host --ipc=host --security-opt=seccomp=unconfined --privileged=true --ulimit stack=67108864 --ulimit memlock=-1 --ulimit nofile=1048576:1048576 --shm-size=32G -v /share:/share --gpus all --name flagos harbor.baai.ac.cn/flagrelease-public/flagrelease_nvidia_qwen3next sleep infinity
 
 
85
  ```
86
 
87
+ ### Serve
88
 
89
+ ```bash
90
+ flagscale serve qwen3_next
91
 
92
+ ```
 
 
93
 
 
 
94
 
95
+ ## Service Invocation
 
 
 
 
 
 
 
 
 
 
 
96
 
97
+ ### API-based Invocation Script
98
 
99
+ ```bash
100
+ import openai
101
+ openai.api_key = "EMPTY"
102
+ openai.base_url = "http://<server_ip>:9010/v1/"
103
+ model = "Qwen3-Next-80B-A3B-Instruct-nvidia-flagos"
104
+ messages = [
105
+ {"role": "system", "content": "You are a helpful assistant."},
106
+ {"role": "user", "content": "What's the weather like today?"}
107
+ ]
108
+ response = openai.chat.completions.create(
109
+ model=model,
110
+ messages=messages,
111
+ stream=False,
112
+ )
113
+ for item in response:
114
+ print(item)
115
 
116
+ ```
 
 
 
117
 
118
+ ### AnythingLLM Integration Guide
 
 
 
119
 
120
+ #### 1. Download & Install
121
 
122
+ - Visit the official site: https://anythingllm.com/
123
+ - Choose the appropriate version for your OS (Windows/macOS/Linux)
124
+ - Follow the installation wizard to complete the setup
125
 
126
+ #### 2. Configuration
 
 
 
 
127
 
128
+ - Launch AnythingLLM
129
+ - Open settings (bottom left, fourth tab)
130
+ - Configure core LLM parameters
131
+ - Click "Save Settings" to apply changes
132
 
133
+ #### 3. Model Interaction
134
 
135
+ - After model loading is complete:
136
+ - Click **"New Conversation"**
137
+ - Enter your question (e.g., “Explain the basics of quantum computing”)
138
+ - Click the send button to get a response
139
 
140
+ # Contributing
 
 
141
 
142
+ We warmly welcome global developers to join us:
143
 
144
+ 1. Submit Issues to report problems
145
+ 2. Create Pull Requests to contribute code
146
+ 3. Improve technical documentation
147
+ 4. Expand hardware adaptation support
148
 
 
149
 
150
+ # License
151
 
152
+ 本模型的权重来源于Qwen/Qwen3-Next-80B-A3B-Instruct,以apache2.0协议https://www.apache.org/licenses/LICENSE-2.0.txt开源。