i3-12m / modeling_i3.py
FlameF0X's picture
Update modeling_i3.py
bb3c416 verified
# modeling_i3.py
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from configuration_i3 import I3Config
from i3_architecture import i3Model # your actual i3 implementation
class I3ForCausalLM(PreTrainedModel):
config_class = I3Config
def __init__(self, config):
super().__init__(config)
self.model = i3Model(
vocab_size=config.vocab_size,
d_model=config.d_model,
n_layers=config.n_layers,
n_heads=config.n_heads,
max_seq_len=config.max_seq_len,
rank=config.rank,
d_state=config.d_state,
)
self.lm_head = torch.nn.Linear(config.d_model, config.vocab_size, bias=False)
self.post_init()
def forward(self, input_ids, labels=None, attention_mask=None, **kwargs):
outputs = self.model(input_ids)
logits = self.lm_head(outputs)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1))
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
)
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {"input_ids": input_ids}