File size: 7,925 Bytes
b7599e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.nn as nn
import torch.nn.functional as F
import json, os, numpy as np

# ============================================================================
class ChunkTokenizer:
    def __init__(self):
        self.chunk_to_idx = {}
        self.idx_to_chunk = {}
        self.vocab_size = 0

    def load(self, path):
        with open(path, 'r') as f:
            vocab_data = json.load(f)
        self.chunk_to_idx = vocab_data['chunk_to_idx']
        self.idx_to_chunk = {int(k): v for k, v in vocab_data['idx_to_chunk'].items()}
        self.vocab_size = vocab_data['vocab_size']
        print(f"Loaded tokenizer ({self.vocab_size} tokens)")

    def encode(self, text):
        text = text.lower()
        pos, indices = 0, []
        while pos < len(text):
            for size in (3, 2, 1):
                chunk = text[pos:pos+size]
                if chunk in self.chunk_to_idx:
                    indices.append(self.chunk_to_idx[chunk])
                    pos += size
                    break
            else:
                pos += 1
        return indices

    def decode(self, indices):
        return ''.join([self.idx_to_chunk.get(int(i), '') for i in indices])


# ============================================================================
class LoRPtLinear(nn.Module):
    def __init__(self, in_features, out_features, rank=64):
        super().__init__()
        self.lora_A = nn.Parameter(torch.randn(out_features, rank) * 0.02)
        self.lora_B = nn.Parameter(torch.randn(rank, in_features) * 0.02)
        self.bias = nn.Parameter(torch.zeros(out_features))

    def forward(self, x):
        return F.linear(x, self.lora_A @ self.lora_B, self.bias)


class RWKVMambaHybrid(nn.Module):
    def __init__(self, d_model, d_state=32):
        super().__init__()
        self.d_model = d_model
        self.d_state = d_state
        self.w_mix = nn.Parameter(torch.ones(d_model) * 0.5)
        self.A = nn.Parameter(torch.randn(d_state, d_state) * 0.01)
        self.B = nn.Parameter(torch.randn(d_state, d_model) * 0.01)
        self.C = nn.Parameter(torch.randn(d_model, d_state) * 0.01)
        self.D = nn.Parameter(torch.ones(d_model) * 0.1)

    def forward(self, x):
        B, T, C = x.shape
        h = torch.zeros(B, C, device=x.device)
        s = torch.zeros(B, self.d_state, device=x.device)
        outputs = []
        for t in range(T):
            x_t = x[:, t, :]
            h = self.w_mix * h + (1 - self.w_mix) * x_t
            s = s @ self.A.T + x_t @ self.B.T
            y_t = s @ self.C.T + h * self.D
            outputs.append(y_t)
        return torch.stack(outputs, dim=1)


class KQVAttention(nn.Module):
    def __init__(self, d_model, n_heads=16, rank=64):
        super().__init__()
        self.d_model = d_model
        self.n_heads = n_heads
        self.head_dim = d_model // n_heads
        self.q_down = nn.Linear(d_model, rank)
        self.q_up = nn.Linear(rank, d_model)
        self.k_down = nn.Linear(d_model, rank)
        self.k_up = nn.Linear(rank, d_model)
        self.v_down = nn.Linear(d_model, rank)
        self.v_up = nn.Linear(rank, d_model)
        self.out_proj = nn.Linear(d_model, d_model)

    def forward(self, x, mask=None):
        B, T, C = x.shape
        q = self.q_up(self.q_down(x))
        k = self.k_up(self.k_down(x))
        v = self.v_up(self.v_down(x))
        q = q.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
        k = k.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
        v = v.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
        attn = (q @ k.transpose(-2, -1)) / np.sqrt(self.head_dim)
        if mask is not None:
            attn = attn.masked_fill(mask == 0, float('-inf'))
        attn = F.softmax(attn, dim=-1)
        out = attn @ v
        out = out.transpose(1, 2).contiguous().view(B, T, C)
        return self.out_proj(out)


class i3Block(nn.Module):
    def __init__(self, d_model, n_heads=16, d_state=32, rank=64, ffn_mult=4):
        super().__init__()
        self.hybrid = RWKVMambaHybrid(d_model, d_state)
        self.ln1 = nn.LayerNorm(d_model)
        self.attn = KQVAttention(d_model, n_heads, rank)
        self.ln2 = nn.LayerNorm(d_model)
        d_ff = d_model * ffn_mult
        self.ffn = nn.Sequential(
            LoRPtLinear(d_model, d_ff, rank),
            nn.GELU(),
            LoRPtLinear(d_ff, d_model, rank)
        )
        self.ln3 = nn.LayerNorm(d_model)

    def forward(self, x, mask=None):
        x = x + self.hybrid(self.ln1(x))
        x = x + self.attn(self.ln2(x), mask)
        x = x + self.ffn(self.ln3(x))
        return x


class i3Model(nn.Module):
    def __init__(self, vocab_size, d_model=512, n_layers=24, n_heads=16,
                 max_seq_len=256, rank=64, d_state=32):
        super().__init__()
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.max_seq_len = max_seq_len
        self.embed = nn.Embedding(vocab_size, d_model)
        self.pos_embed = nn.Embedding(max_seq_len, d_model)
        self.layers = nn.ModuleList([
            i3Block(d_model, n_heads, d_state, rank)
            for _ in range(n_layers)
        ])
        self.ln_f = nn.LayerNorm(d_model)
        self.head = LoRPtLinear(d_model, vocab_size, rank)

    def forward(self, idx):
        B, T = idx.shape
        pos = torch.arange(0, T, device=idx.device).unsqueeze(0)
        x = self.embed(idx) + self.pos_embed(pos)
        mask = torch.tril(torch.ones(T, T, device=idx.device)).view(1, 1, T, T)
        for layer in self.layers:
            x = layer(x, mask)
        x = self.ln_f(x)
        return self.head(x)

    @torch.no_grad()
    def generate(self, idx, max_new_tokens=100, temperature=0.8, top_k=40):
        for _ in range(max_new_tokens):
            idx_cond = idx[:, -self.max_seq_len:]
            logits = self(idx_cond)[:, -1, :] / temperature
            v, _ = torch.topk(logits, top_k)
            logits[logits < v[:, [-1]]] = -float("inf")
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, 1)
            idx = torch.cat((idx, idx_next), dim=1)
        return idx


# ============================================================================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = ChunkTokenizer()
tokenizer.load("tokenizer.json")

model = i3Model(
    vocab_size=tokenizer.vocab_size,
    d_model=512,
    n_layers=24,
    n_heads=16,
    max_seq_len=256,
    rank=64,
    d_state=32
).to(device)

state_dict = torch.load("pytorch_model.bin", map_location=device)
model.load_state_dict(state_dict)
model.eval()
print("✓ Model loaded successfully")


# ============================================================================
@torch.no_grad()
def infer(prompt, max_new_tokens=100, temperature=0.8, top_k=40):
    input_ids = torch.tensor([tokenizer.encode(prompt)], dtype=torch.long).to(device)
    output = model.generate(input_ids, max_new_tokens=max_new_tokens,
                            temperature=temperature, top_k=top_k)
    return tokenizer.decode(output[0].cpu().numpy())


def chat_loop():
    print("=== i3 Interactive Chat ([INST] format) ===")
    history = ""
    while True:
        user_input = input("[You] ")
        if user_input.strip().lower() in {"quit", "exit"}:
            break
        prompt = f"{history}[INST] {user_input.strip()} [/INST]"
        reply = infer(prompt, max_new_tokens=120)
        reply_clean = reply.replace(prompt.lower(), "").strip()
        print("[i3]:", reply_clean)
        history += f"[INST] {user_input.strip()} [/INST] {reply_clean} "


# ============================================================================
print("\nExample:")
prompt = "[INST] What can we do to make people happier [/INST]"
print("Prompt:", prompt)
print("Generated:", infer(prompt))

# Optionally start a chat loop:
# chat_loop()