FritzStack commited on
Commit
883b1e1
·
verified ·
1 Parent(s): 42c258b

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:4615
9
+ - loss:TripletLoss
10
+ base_model: sentence-transformers/all-mpnet-base-v2
11
+ widget:
12
+ - source_sentence: Do you ever feel like you have failed in life or let yourself down?
13
+ sentences:
14
+ - But I just don't feel like even getting started because I know that I will fail
15
+ again.
16
+ - I cant remember the last time I felt happiness.
17
+ - That was their biggest and last mistake.
18
+ - source_sentence: Do you feel sad or unhappy?
19
+ sentences:
20
+ - I have been depressed since late September so I feel you.
21
+ - I share a lot of your traits, and considered myself a failure too.
22
+ - He conveys that feeling of regret so well I can feel it everytime
23
+ - source_sentence: Do you feel hopeful about your future or do things seem hopeless?
24
+ sentences:
25
+ - I'm pretty optimistic though since the pace of technological growth is accelerating
26
+ so rapidly.
27
+ - '[For a clickable image, click here](http://futurism.com/thisweekinscience)
28
+
29
+
30
+ [To get these images directly to your inbox, sign up here](http://futurism.com/subscribe)
31
+
32
+
33
+ _
34
+
35
+
36
+ Sources | Reddit
37
+
38
+ --- | ---
39
+
40
+ [Oldest and Furthest Galaxy](http://futurism.com/links/astronomers-discover-the-oldest-and-farthest-known-galaxy/)
41
+ | [Reddit](https://www.reddit.com/r/science/comments/3jypyf/researchers_find_132_billion_yearold_galaxy_in/)
42
+
43
+ [3D Printed Ribs ](http://futurism.com/links/these-3d-printed-titanium-ribs-were-successfully-implanted-in-a-person/)
44
+ | [Reddit](https://www.reddit.com/r/technology/comments/3kj8pf/patient_receives_3dprinted_titanium_sternum_and/?ref=search_posts)
45
+
46
+ [Chinese Far Side of Moon] (http://m.phys.org/news/2015-09-china-aims-probe-moon-side.html) |
47
+ [Reddit](https://www.reddit.com/r/worldnews/comments/3kcsg5/china_to_explore_dark_side_of_the_moon_china_has/)
48
+
49
+ [Rugby Ball Molecule](http://www.forbes.com/sites/carmendrahl/2015/09/02/giant-rugby-ball-new-interaction-chemistry/)
50
+ | [Reddit](https://www.reddit.com/r/EverythingScience/comments/3krt22/this_giant_rugby_ball_contains_a_new_chemical/)
51
+
52
+ [Measuring the Universe](http://astronomynow.com/2015/09/04/using-stellar-twins-to-climb-the-cosmic-distance-ladder/)
53
+ | [Reddit](https://www.reddit.com/r/science/comments/3jum8c/astronomers_have_developed_a_new_highly_accurate/)
54
+
55
+ [3D Printed Stethoscope ](http://futurism.com/links/3d-printed-stethoscopes-cost-as-little-as-2-50-and-are-just-as-good/)
56
+ | [Reddit](https://www.reddit.com/r/news/comments/3kgboz/doctor_3d_prints_stethoscope_to_alleviate_supply/)
57
+
58
+ [Giant Structure in Universe](http://phys.org/news/2015-09-giant-ring-like-universe.html)
59
+ | [Reddit](https://www.reddit.com/r/EverythingScience/comments/3jzjlm/surprising_giant_ringlike_structure_in_the/)
60
+
61
+ [Recoded Cell Factories](http://m.phys.org/news/2015-09-recoded-cells-factories-proteins.html)
62
+ | [Reddit](https://www.reddit.com/r/EverythingScience/comments/3krux3/researchers_transform_recoded_cells_into/)'
63
+ - I do not expect things to work out for me.
64
+ - source_sentence: Do you feel sad or unhappy?
65
+ sentences:
66
+ - Me everyday im depressing
67
+ - And now I feel very alone and useless.
68
+ - Sucks that I'm not the only one because others are suffering, but it's nice to
69
+ know I'm not alone.
70
+ - source_sentence: Do you feel sad or unhappy?
71
+ sentences:
72
+ - I cried because I lost not only my money, but because I lost myself.
73
+ - Im not exactly depressed, at least not all of the time.
74
+ - does anyone feel like they cant be sad
75
+ pipeline_tag: sentence-similarity
76
+ library_name: sentence-transformers
77
+ ---
78
+
79
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
80
+
81
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
82
+
83
+ ## Model Details
84
+
85
+ ### Model Description
86
+ - **Model Type:** Sentence Transformer
87
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision e8c3b32edf5434bc2275fc9bab85f82640a19130 -->
88
+ - **Maximum Sequence Length:** 384 tokens
89
+ - **Output Dimensionality:** 768 dimensions
90
+ - **Similarity Function:** Cosine Similarity
91
+ <!-- - **Training Dataset:** Unknown -->
92
+ <!-- - **Language:** Unknown -->
93
+ <!-- - **License:** Unknown -->
94
+
95
+ ### Model Sources
96
+
97
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
98
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
99
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
100
+
101
+ ### Full Model Architecture
102
+
103
+ ```
104
+ SentenceTransformer(
105
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False, 'architecture': 'MPNetModel'})
106
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
107
+ (2): Normalize()
108
+ )
109
+ ```
110
+
111
+ ## Usage
112
+
113
+ ### Direct Usage (Sentence Transformers)
114
+
115
+ First install the Sentence Transformers library:
116
+
117
+ ```bash
118
+ pip install -U sentence-transformers
119
+ ```
120
+
121
+ Then you can load this model and run inference.
122
+ ```python
123
+ from sentence_transformers import SentenceTransformer
124
+
125
+ # Download from the 🤗 Hub
126
+ model = SentenceTransformer("FritzStack/mpnet_MH_embedding")
127
+ # Run inference
128
+ sentences = [
129
+ 'Do you feel sad or unhappy?',
130
+ 'Im not exactly depressed, at least not all of the time.',
131
+ 'does anyone feel like they cant be sad',
132
+ ]
133
+ embeddings = model.encode(sentences)
134
+ print(embeddings.shape)
135
+ # [3, 768]
136
+
137
+ # Get the similarity scores for the embeddings
138
+ similarities = model.similarity(embeddings, embeddings)
139
+ print(similarities)
140
+ # tensor([[ 1.0000, 0.7532, -0.4572],
141
+ # [ 0.7532, 1.0000, -0.0545],
142
+ # [-0.4572, -0.0545, 1.0000]])
143
+ ```
144
+
145
+ <!--
146
+ ### Direct Usage (Transformers)
147
+
148
+ <details><summary>Click to see the direct usage in Transformers</summary>
149
+
150
+ </details>
151
+ -->
152
+
153
+ <!--
154
+ ### Downstream Usage (Sentence Transformers)
155
+
156
+ You can finetune this model on your own dataset.
157
+
158
+ <details><summary>Click to expand</summary>
159
+
160
+ </details>
161
+ -->
162
+
163
+ <!--
164
+ ### Out-of-Scope Use
165
+
166
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
167
+ -->
168
+
169
+ <!--
170
+ ## Bias, Risks and Limitations
171
+
172
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
173
+ -->
174
+
175
+ <!--
176
+ ### Recommendations
177
+
178
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
179
+ -->
180
+
181
+ ## Training Details
182
+
183
+ ### Training Dataset
184
+
185
+ #### Unnamed Dataset
186
+
187
+ * Size: 4,615 training samples
188
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
189
+ * Approximate statistics based on the first 1000 samples:
190
+ | | anchor | positive | negative |
191
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
192
+ | type | string | string | string |
193
+ | details | <ul><li>min: 9 tokens</li><li>mean: 13.63 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 20.7 tokens</li><li>max: 169 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 42.11 tokens</li><li>max: 384 tokens</li></ul> |
194
+ * Samples:
195
+ | anchor | positive | negative |
196
+ |:-----------------------------------------|:------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|
197
+ | <code>Do you feel sad or unhappy?</code> | <code>I do not feel sad.</code> | <code>I've been suffering my whole life, and it's currently at its peak :(</code> |
198
+ | <code>Do you feel sad or unhappy?</code> | <code>I feel sad much of the time.</code> | <code>Things will get better, just focus more in the positive rather than the negative</code> |
199
+ | <code>Do you feel sad or unhappy?</code> | <code>I am sad all the time.</code> | <code>That's why I understand I'm terrible, because it's wrong I get annoyed by that, people should do what they want, but I just can't stand being alone.</code> |
200
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
201
+ ```json
202
+ {
203
+ "distance_metric": "TripletDistanceMetric.COSINE",
204
+ "triplet_margin": 0.5
205
+ }
206
+ ```
207
+
208
+ ### Training Hyperparameters
209
+ #### Non-Default Hyperparameters
210
+
211
+ - `per_device_train_batch_size`: 2
212
+ - `gradient_accumulation_steps`: 8
213
+ - `warmup_steps`: 100
214
+ - `fp16`: True
215
+
216
+ #### All Hyperparameters
217
+ <details><summary>Click to expand</summary>
218
+
219
+ - `overwrite_output_dir`: False
220
+ - `do_predict`: False
221
+ - `eval_strategy`: no
222
+ - `prediction_loss_only`: True
223
+ - `per_device_train_batch_size`: 2
224
+ - `per_device_eval_batch_size`: 8
225
+ - `per_gpu_train_batch_size`: None
226
+ - `per_gpu_eval_batch_size`: None
227
+ - `gradient_accumulation_steps`: 8
228
+ - `eval_accumulation_steps`: None
229
+ - `torch_empty_cache_steps`: None
230
+ - `learning_rate`: 5e-05
231
+ - `weight_decay`: 0.0
232
+ - `adam_beta1`: 0.9
233
+ - `adam_beta2`: 0.999
234
+ - `adam_epsilon`: 1e-08
235
+ - `max_grad_norm`: 1.0
236
+ - `num_train_epochs`: 3
237
+ - `max_steps`: -1
238
+ - `lr_scheduler_type`: linear
239
+ - `lr_scheduler_kwargs`: {}
240
+ - `warmup_ratio`: 0.0
241
+ - `warmup_steps`: 100
242
+ - `log_level`: passive
243
+ - `log_level_replica`: warning
244
+ - `log_on_each_node`: True
245
+ - `logging_nan_inf_filter`: True
246
+ - `save_safetensors`: True
247
+ - `save_on_each_node`: False
248
+ - `save_only_model`: False
249
+ - `restore_callback_states_from_checkpoint`: False
250
+ - `no_cuda`: False
251
+ - `use_cpu`: False
252
+ - `use_mps_device`: False
253
+ - `seed`: 42
254
+ - `data_seed`: None
255
+ - `jit_mode_eval`: False
256
+ - `bf16`: False
257
+ - `fp16`: True
258
+ - `fp16_opt_level`: O1
259
+ - `half_precision_backend`: auto
260
+ - `bf16_full_eval`: False
261
+ - `fp16_full_eval`: False
262
+ - `tf32`: None
263
+ - `local_rank`: 0
264
+ - `ddp_backend`: None
265
+ - `tpu_num_cores`: None
266
+ - `tpu_metrics_debug`: False
267
+ - `debug`: []
268
+ - `dataloader_drop_last`: False
269
+ - `dataloader_num_workers`: 0
270
+ - `dataloader_prefetch_factor`: None
271
+ - `past_index`: -1
272
+ - `disable_tqdm`: False
273
+ - `remove_unused_columns`: True
274
+ - `label_names`: None
275
+ - `load_best_model_at_end`: False
276
+ - `ignore_data_skip`: False
277
+ - `fsdp`: []
278
+ - `fsdp_min_num_params`: 0
279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
280
+ - `fsdp_transformer_layer_cls_to_wrap`: None
281
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
282
+ - `parallelism_config`: None
283
+ - `deepspeed`: None
284
+ - `label_smoothing_factor`: 0.0
285
+ - `optim`: adamw_torch_fused
286
+ - `optim_args`: None
287
+ - `adafactor`: False
288
+ - `group_by_length`: False
289
+ - `length_column_name`: length
290
+ - `project`: huggingface
291
+ - `trackio_space_id`: trackio
292
+ - `ddp_find_unused_parameters`: None
293
+ - `ddp_bucket_cap_mb`: None
294
+ - `ddp_broadcast_buffers`: False
295
+ - `dataloader_pin_memory`: True
296
+ - `dataloader_persistent_workers`: False
297
+ - `skip_memory_metrics`: True
298
+ - `use_legacy_prediction_loop`: False
299
+ - `push_to_hub`: False
300
+ - `resume_from_checkpoint`: None
301
+ - `hub_model_id`: None
302
+ - `hub_strategy`: every_save
303
+ - `hub_private_repo`: None
304
+ - `hub_always_push`: False
305
+ - `hub_revision`: None
306
+ - `gradient_checkpointing`: False
307
+ - `gradient_checkpointing_kwargs`: None
308
+ - `include_inputs_for_metrics`: False
309
+ - `include_for_metrics`: []
310
+ - `eval_do_concat_batches`: True
311
+ - `fp16_backend`: auto
312
+ - `push_to_hub_model_id`: None
313
+ - `push_to_hub_organization`: None
314
+ - `mp_parameters`:
315
+ - `auto_find_batch_size`: False
316
+ - `full_determinism`: False
317
+ - `torchdynamo`: None
318
+ - `ray_scope`: last
319
+ - `ddp_timeout`: 1800
320
+ - `torch_compile`: False
321
+ - `torch_compile_backend`: None
322
+ - `torch_compile_mode`: None
323
+ - `include_tokens_per_second`: False
324
+ - `include_num_input_tokens_seen`: no
325
+ - `neftune_noise_alpha`: None
326
+ - `optim_target_modules`: None
327
+ - `batch_eval_metrics`: False
328
+ - `eval_on_start`: False
329
+ - `use_liger_kernel`: False
330
+ - `liger_kernel_config`: None
331
+ - `eval_use_gather_object`: False
332
+ - `average_tokens_across_devices`: True
333
+ - `prompts`: None
334
+ - `batch_sampler`: batch_sampler
335
+ - `multi_dataset_batch_sampler`: proportional
336
+ - `router_mapping`: {}
337
+ - `learning_rate_mapping`: {}
338
+
339
+ </details>
340
+
341
+ ### Training Logs
342
+ | Epoch | Step | Training Loss |
343
+ |:------:|:----:|:-------------:|
344
+ | 0.0347 | 10 | 0.3032 |
345
+ | 0.0693 | 20 | 0.2893 |
346
+ | 0.1040 | 30 | 0.2275 |
347
+ | 0.1386 | 40 | 0.1532 |
348
+ | 0.1733 | 50 | 0.1947 |
349
+ | 0.2080 | 60 | 0.1126 |
350
+ | 0.2426 | 70 | 0.1047 |
351
+ | 0.2773 | 80 | 0.1118 |
352
+ | 0.3120 | 90 | 0.0839 |
353
+ | 0.3466 | 100 | 0.1147 |
354
+ | 0.3813 | 110 | 0.111 |
355
+ | 0.4159 | 120 | 0.0754 |
356
+ | 0.4506 | 130 | 0.0964 |
357
+ | 0.4853 | 140 | 0.1269 |
358
+ | 0.5199 | 150 | 0.0795 |
359
+ | 0.5546 | 160 | 0.1042 |
360
+ | 0.5893 | 170 | 0.0797 |
361
+ | 0.6239 | 180 | 0.0685 |
362
+ | 0.6586 | 190 | 0.0819 |
363
+ | 0.6932 | 200 | 0.0802 |
364
+ | 0.7279 | 210 | 0.0934 |
365
+ | 0.7626 | 220 | 0.0865 |
366
+ | 0.7972 | 230 | 0.0731 |
367
+ | 0.8319 | 240 | 0.0486 |
368
+ | 0.8666 | 250 | 0.075 |
369
+ | 0.9012 | 260 | 0.0627 |
370
+ | 0.9359 | 270 | 0.0844 |
371
+ | 0.9705 | 280 | 0.0776 |
372
+ | 1.0035 | 290 | 0.0707 |
373
+ | 1.0381 | 300 | 0.0479 |
374
+ | 1.0728 | 310 | 0.05 |
375
+ | 1.1075 | 320 | 0.0317 |
376
+ | 1.1421 | 330 | 0.0263 |
377
+ | 1.1768 | 340 | 0.0321 |
378
+ | 1.2114 | 350 | 0.0221 |
379
+ | 1.2461 | 360 | 0.0337 |
380
+ | 1.2808 | 370 | 0.0301 |
381
+ | 1.3154 | 380 | 0.034 |
382
+ | 1.3501 | 390 | 0.0379 |
383
+ | 1.3847 | 400 | 0.0489 |
384
+ | 1.4194 | 410 | 0.0303 |
385
+ | 1.4541 | 420 | 0.0263 |
386
+ | 1.4887 | 430 | 0.0342 |
387
+ | 1.5234 | 440 | 0.0328 |
388
+ | 1.5581 | 450 | 0.0431 |
389
+ | 1.5927 | 460 | 0.0472 |
390
+ | 1.6274 | 470 | 0.0353 |
391
+ | 1.6620 | 480 | 0.0389 |
392
+ | 1.6967 | 490 | 0.0216 |
393
+ | 1.7314 | 500 | 0.0351 |
394
+ | 1.7660 | 510 | 0.0386 |
395
+ | 1.8007 | 520 | 0.039 |
396
+ | 1.8354 | 530 | 0.0264 |
397
+ | 1.8700 | 540 | 0.0295 |
398
+ | 1.9047 | 550 | 0.0329 |
399
+ | 1.9393 | 560 | 0.0487 |
400
+ | 1.9740 | 570 | 0.0287 |
401
+ | 2.0069 | 580 | 0.0306 |
402
+ | 2.0416 | 590 | 0.0171 |
403
+ | 2.0763 | 600 | 0.009 |
404
+ | 2.1109 | 610 | 0.017 |
405
+ | 2.1456 | 620 | 0.0252 |
406
+ | 2.1802 | 630 | 0.0123 |
407
+ | 2.2149 | 640 | 0.0144 |
408
+ | 2.2496 | 650 | 0.0187 |
409
+ | 2.2842 | 660 | 0.02 |
410
+ | 2.3189 | 670 | 0.0065 |
411
+ | 2.3536 | 680 | 0.0131 |
412
+ | 2.3882 | 690 | 0.0138 |
413
+ | 2.4229 | 700 | 0.0111 |
414
+ | 2.4575 | 710 | 0.0108 |
415
+ | 2.4922 | 720 | 0.0079 |
416
+ | 2.5269 | 730 | 0.0062 |
417
+ | 2.5615 | 740 | 0.0105 |
418
+ | 2.5962 | 750 | 0.0095 |
419
+ | 2.6308 | 760 | 0.0112 |
420
+ | 2.6655 | 770 | 0.0052 |
421
+ | 2.7002 | 780 | 0.0103 |
422
+ | 2.7348 | 790 | 0.0108 |
423
+ | 2.7695 | 800 | 0.0059 |
424
+ | 2.8042 | 810 | 0.0099 |
425
+ | 2.8388 | 820 | 0.0142 |
426
+ | 2.8735 | 830 | 0.0112 |
427
+ | 2.9081 | 840 | 0.0194 |
428
+ | 2.9428 | 850 | 0.0128 |
429
+ | 2.9775 | 860 | 0.0093 |
430
+
431
+
432
+ ### Framework Versions
433
+ - Python: 3.12.12
434
+ - Sentence Transformers: 5.1.1
435
+ - Transformers: 4.57.1
436
+ - PyTorch: 2.8.0+cu126
437
+ - Accelerate: 1.10.1
438
+ - Datasets: 4.0.0
439
+ - Tokenizers: 0.22.1
440
+
441
+ ## Citation
442
+
443
+ ### BibTeX
444
+
445
+ #### Sentence Transformers
446
+ ```bibtex
447
+ @inproceedings{reimers-2019-sentence-bert,
448
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
449
+ author = "Reimers, Nils and Gurevych, Iryna",
450
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
451
+ month = "11",
452
+ year = "2019",
453
+ publisher = "Association for Computational Linguistics",
454
+ url = "https://arxiv.org/abs/1908.10084",
455
+ }
456
+ ```
457
+
458
+ #### TripletLoss
459
+ ```bibtex
460
+ @misc{hermans2017defense,
461
+ title={In Defense of the Triplet Loss for Person Re-Identification},
462
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
463
+ year={2017},
464
+ eprint={1703.07737},
465
+ archivePrefix={arXiv},
466
+ primaryClass={cs.CV}
467
+ }
468
+ ```
469
+
470
+ <!--
471
+ ## Glossary
472
+
473
+ *Clearly define terms in order to be accessible across audiences.*
474
+ -->
475
+
476
+ <!--
477
+ ## Model Card Authors
478
+
479
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
480
+ -->
481
+
482
+ <!--
483
+ ## Model Card Contact
484
+
485
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
486
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "dtype": "float32",
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "transformers_version": "4.57.1",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.1",
4
+ "transformers": "4.57.1",
5
+ "pytorch": "2.8.0+cu126"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef38bb8c5a42bcf91b4728964a8790df04a9592ddf112364da601959296aa0ac
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 128,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff