Funybubble commited on
Commit
e4bb56d
·
1 Parent(s): e56d574

Upload replit_lm_tokenizer.py

Browse files
Files changed (1) hide show
  1. replit_lm_tokenizer.py +119 -0
replit_lm_tokenizer.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """
16
+ Forked from the file src/transformers/models/bert_generation/tokenization_bert_generation.py from the HuggingFace Transformers library.
17
+ Permalink: https://github.com/huggingface/transformers/blob/04ab5605fbb4ef207b10bf2772d88c53fc242e83/src/transformers/models/bert_generation/tokenization_bert_generation.py
18
+
19
+ Tokenizer class for ReplitLM
20
+ Class is modified for compatibility with custom vocabulary and to achieve desired encode/decode behavior for Replit Code V1 3B model.
21
+ """
22
+ import os
23
+ import sentencepiece as spm
24
+ from shutil import copyfile
25
+ from transformers import PreTrainedTokenizer
26
+ from typing import Any, Dict, List, Optional, Tuple
27
+ VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}
28
+
29
+ class ReplitLMTokenizer(PreTrainedTokenizer):
30
+ """
31
+ Construct a ReplitLMTokenizer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
32
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
33
+
34
+ Args:
35
+ vocab_file (`str`):
36
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
37
+ contains the vocabulary necessary to instantiate a tokenizer.
38
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
39
+ The end of sequence token.
40
+ bos_token (`str`, *optional*, defaults to `None`):
41
+ The begin of sequence token.
42
+ unk_token (`str`, *optional*, defaults to `"<|unk|>"`):
43
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
44
+ token instead.
45
+ pad_token (`str`, *optional*, defaults to `"<|pad|>"`):
46
+ The token used for padding, for example when batching sequences of different lengths.
47
+ sp_model_kwargs (`dict`, *optional*):
48
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
49
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
50
+ to set:
51
+ - `enable_sampling`: Enable subword regularization.
52
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
53
+ - `nbest_size = {0,1}`: No sampling is performed.
54
+ - `nbest_size > 1`: samples from the nbest_size results.
55
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
56
+ using forward-filtering-and-backward-sampling algorithm.
57
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
58
+ BPE-dropout.
59
+ """
60
+ vocab_files_names = VOCAB_FILES_NAMES
61
+ prefix_tokens: List[int] = []
62
+ model_input_names = ['input_ids', 'attention_mask']
63
+
64
+ def __init__(self, vocab_file, bos_token=None, eos_token='<|endoftext|>', unk_token='<|unk|>', pad_token='<|pad|>', sep_token=None, sp_model_kwargs: Optional[Dict[str, Any]]=None, **kwargs) -> None:
65
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
66
+ super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs)
67
+ self.vocab_file = vocab_file
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(vocab_file)
70
+
71
+ @property
72
+ def vocab_size(self):
73
+ return self.sp_model.get_piece_size()
74
+
75
+ def get_vocab(self):
76
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
77
+ vocab.update(self.added_tokens_encoder)
78
+ return vocab
79
+
80
+ def __getstate__(self):
81
+ state = self.__dict__.copy()
82
+ state['sp_model'] = None
83
+ return state
84
+
85
+ def __setstate__(self, d):
86
+ self.__dict__ = d
87
+ if not hasattr(self, 'sp_model_kwargs'):
88
+ self.sp_model_kwargs = {}
89
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
90
+ self.sp_model.load(self.vocab_file)
91
+
92
+ def _tokenize(self, text: str) -> List[str]:
93
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
94
+ return self.sp_model.encode(text, out_type=str)
95
+
96
+ def _convert_token_to_id(self, token):
97
+ """Converts a token (str) in an id using the vocab."""
98
+ return self.sp_model.piece_to_id(token)
99
+
100
+ def _convert_id_to_token(self, index):
101
+ """Converts an index (integer) in a token (str) using the vocab."""
102
+ token = self.sp_model.id_to_piece(index)
103
+ return token
104
+
105
+ def convert_tokens_to_string(self, tokens):
106
+ """Converts a sequence of tokens (string) in a single string."""
107
+ return self.sp_model.decode(tokens)
108
+
109
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str]=None) -> Tuple[str]:
110
+ if not os.path.isdir(save_directory):
111
+ raise ValueError(f'Vocabulary path ({save_directory}) should be a directory')
112
+ out_vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
113
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
114
+ copyfile(self.vocab_file, out_vocab_file)
115
+ elif not os.path.isfile(self.vocab_file):
116
+ with open(out_vocab_file, 'wb') as fi:
117
+ content_spiece_model = self.sp_model.serialized_model_proto()
118
+ fi.write(content_spiece_model)
119
+ return (out_vocab_file,)