File size: 18,445 Bytes
0eb3766 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import tqdm
from typing import List, Dict, Any
from dataclasses import dataclass
from abc import ABC, abstractmethod
from PIL import Image
import numpy as np
import cv2
from typing import Tuple
import os
import json
import argparse
import torch
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig, CLIPImageProcessor,
CLIPVisionModel, GenerationConfig)
def exact_match_accuracy(predictions: List[str], references: List[str]) -> float:
correct = 0
for pred, ref in zip(predictions, references):
if isinstance(ref, str):
ref = [ref]
is_match_this_turn = False
for r in ref:
if pred.strip() == r.strip():
is_match_this_turn = True
if is_match_this_turn:
correct += 1
return correct / len(predictions) if predictions else 0.0
def bbox_to_corners(bbox):
"""将(x_min, y_min, w, h)格式转换为(x_min, y_min, x_max, y_max)格式"""
x_min, y_min, w, h = bbox
return (x_min, y_min, x_min + w, y_min + h)
def calculate_iou(bbox1, bbox2):
"""计算两个边界框的交并比(IoU/Jaccard Index)"""
# 转换为对角坐标格式
bbox1 = bbox_to_corners(bbox1)
bbox2 = bbox_to_corners(bbox2)
# 计算交集区域的坐标
x1 = max(bbox1[0], bbox2[0])
y1 = max(bbox1[1], bbox2[1])
x2 = min(bbox1[2], bbox2[2])
y2 = min(bbox1[3], bbox2[3])
# 计算交集面积
intersection_area = max(0, x2 - x1) * max(0, y2 - y1)
# 计算两个边界框的面积
bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
# 计算并集面积
union_area = bbox1_area + bbox2_area - intersection_area
# 计算IoU
if union_area == 0:
return 0.0
return intersection_area / union_area
def calculate_j_metric(pred_bboxes, gt_bboxes):
"""计算J指标(Jaccard Index)"""
if len(pred_bboxes) != len(gt_bboxes):
raise ValueError("预测边界框和真实边界框数量不一致")
iou_values = []
for pred, gt in zip(pred_bboxes, gt_bboxes):
iou = calculate_iou(pred, gt)
iou_values.append(iou)
# 返回平均Jaccard Index
return sum(iou_values) / len(iou_values) if iou_values else 0.0
def calculate_f1_score(pred_bboxes, gt_bboxes, threshold=0.5):
"""计算F1 Score(F指标)"""
if len(pred_bboxes) == 0 and len(gt_bboxes) == 0:
return 1.0 # 特殊情况:没有检测也没有真实目标,视为完全正确
true_positives = 0
false_positives = 0
false_negatives = 0
# 标记已匹配的真实边界框
gt_matched = [False] * len(gt_bboxes)
# 计算每对边界框的IoU
iou_matrix = []
for i, pred in enumerate(pred_bboxes):
row = []
for j, gt in enumerate(gt_bboxes):
row.append(calculate_iou(pred, gt))
iou_matrix.append(row)
# 贪心匹配:将每个预测边界框匹配到IoU最高的真实边界框
for i in range(len(pred_bboxes)):
if not iou_matrix:
break
# 找到当前行的最大值及其索引
max_iou = max(iou_matrix[i]) if iou_matrix[i] else 0
j = iou_matrix[i].index(max_iou) if iou_matrix[i] else -1
if max_iou >= threshold:
true_positives += 1
gt_matched[j] = True
else:
false_positives += 1
# 计算假阴性
false_negatives = sum(1 for matched in gt_matched if not matched)
# 计算精确率和召回率
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
# 计算F1 Score
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0
return f1
def calculate_j_and_f_metrics(pred_bboxes, gt_bboxes, iou_threshold=0.5):
"""计算J指标和F指标"""
# 计算J指标
j_metric = calculate_j_metric(pred_bboxes, gt_bboxes)
# 计算F指标
f_metric = calculate_f1_score(pred_bboxes, gt_bboxes, threshold=iou_threshold)
return {
"J_metric": j_metric,
"F_metric": f_metric
}
def read_flow(file_path: str) -> np.ndarray:
if file_path.endswith('.flo'):
return read_flow_flo(file_path)
elif file_path.endswith(('.png', '.jpg', '.jpeg')):
return read_flow_png(file_path)
else:
raise NotImplementedError
def read_flow_flo(file_path: str) -> np.ndarray:
with open(file_path, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
if 202021.25 != magic:
raise NotImplementedError
w = np.fromfile(f, np.int32, count=1)[0]
h = np.fromfile(f, np.int32, count=1)[0]
flow = np.fromfile(f, np.float32, count=2 * w * h)
flow = flow.reshape(h, w, 2)
return flow
def read_flow_png(file_path: str) -> np.ndarray:
img = cv2.imread(file_path, cv2.IMREAD_UNCHANGED).astype(np.float32)
# 确保图像有足够的通道
if len(img.shape) != 3 or img.shape[2] < 2:
raise NotImplementedError
u = (img[:, :, 2] - 32768.0) / 64.0 # R
v = (img[:, :, 1] - 32768.0) / 64.0 # G
flow = np.stack([u, v], axis=2)
return flow
def calculate_epe(flow_gt: np.ndarray, flow_pred: np.ndarray) -> Tuple[float, np.ndarray]:
if flow_gt.shape != flow_pred.shape:
raise NotImplementedError
diff = flow_gt - flow_pred
epe_map = np.sqrt(np.sum(diff ** 2, axis=2))
mean_epe = np.mean(epe_map)
return mean_epe, epe_map
class Sa2VAModel:
def __init__(self, model_name="ByteDance/Sa2VA-4B"):
self.model_name = model_name
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
)
self.model = model
self.tokenizer = tokenizer
def generate(self, input_dict):
pred_dict = self.model.predict_forward(**input_dict, tokenizer=self.tokenizer)
if 'prediction_masks' in pred_dict.keys() and pred_dict['prediction_masks'] and len(
pred_dict['prediction_masks']) != 0:
masks = pred_dict['prediction_masks'][0] # (f, h, w)
else:
masks = None
text_response = pred_dict["prediction"]
return text_response, masks
@dataclass
class Instance:
input: Dict[str, Any]
output: Dict[str, Any]
id: str
class BaseTask(ABC):
def __init__(self, task_data: Dict[str, Any], model):
self.task_data = task_data
self.model = model
self.data = self._parse_data(task_data)
@abstractmethod
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
pass
@abstractmethod
def evaluate(self) -> Dict[str, float]:
pass
@abstractmethod
def run_inference(self):
pass
def get_bbox_from_mask(mask):
if len(mask.shape) != 2:
raise NotImplementedError
y_indices, x_indices = np.nonzero(mask)
if len(x_indices) == 0 or len(y_indices) == 0:
return None
x_min = np.min(x_indices)
x_max = np.max(x_indices)
y_min = np.min(y_indices)
y_max = np.max(y_indices)
return (x_min, y_min, x_max-x_min, y_max-y_min)
def mask2bbox(masks, video_length):
if masks is None:
bboxes = [[0, 0, 0, 0]] * video_length
else:
bboxes = []
for mask in masks:
bbox = get_bbox_from_mask(mask)
if bbox is None:
bbox = [0, 0, 0, 0]
bboxes.append(bbox)
return bboxes
class MatchTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [Instance(input=d["input"], output=d["output"], id=d["id"])
for d in task_data["data"]]
def run_inference(self):
self.predictions = []
self.references = []
for inst in tqdm.tqdm(self.data):
prompt = "<image>\n" + inst.input["prompt"]
video_folder = inst.input["video_folder"]
frame_files = [os.path.join(video_folder, _name) for _name in os.listdir(video_folder)]
video = []
for image_path in frame_files:
video.append(Image.open(image_path).convert('RGB'))
input_dict = {
"video": video,
"text": prompt,
}
response, _ = self.model.generate(input_dict, max_new_tokens=256)
response = response.split("<")[0].strip()
self.predictions.append(response)
self.references.append(inst.output["answer"])
def evaluate(self) -> Dict[str, float]:
acc = exact_match_accuracy(self.predictions, self.references)
return {"accuracy": acc}
class TrackingTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [Instance(input=d["input"], output=d["output"], id=d["id"])
for d in task_data["data"]]
def run_inference(self):
self.predictions = []
self.references = []
for inst in tqdm.tqdm(self.data):
prompt = "<image>\n" + inst.input["prompt"]
video_folder = inst.input["video_folder"]
frame_files = [os.path.join(video_folder, _name) for _name in os.listdir(video_folder)]
video = []
for image_path in frame_files:
video.append(Image.open(image_path).convert('RGB'))
input_dict = {
"video": video,
"text": prompt,
}
response, masks = self.model.generate(input_dict, max_new_tokens=256)
bboxes = mask2bbox(masks, len(video))
self.predictions.append(bboxes)
self.references.append(inst.output["answer"])
def evaluate(self) -> Dict[str, float]:
j_f, n = 0, 1e-4
for pred_bboxes, gt_bboxes in zip(self.predictions, self.references):
metrics = calculate_j_and_f_metrics(pred_bboxes, gt_bboxes)
j_f += (metrics['J_metric'] + metrics['F_metric']) / 2.0
n += 1
j_f = j_f / n
return {"J&F": j_f}
class FlowTask(BaseTask):
def _parse_data(self, task_data: Dict[str, Any]) -> List[Instance]:
return [Instance(input=d["input"], output=d["output"], id=d["id"])
for d in task_data["data"]]
def run_inference(self):
self.predictions = []
self.references = []
for inst in tqdm.tqdm(self.data):
prompt = "<image>\n" + inst.input["prompt"]
video_folder = inst.input["video_folder"]
frame_files = [os.path.join(video_folder, _name) for _name in os.listdir(video_folder)]
video = []
for image_path in frame_files:
video.append(Image.open(image_path).convert('RGB'))
input_dict = {
"video": video,
"text": prompt,
}
response, masks = self.model.generate(input_dict, max_new_tokens=256)
pred_flows = np.zeros(masks.shape[1], masks.shape[2], 2)
self.predictions.append(pred_flows)
self.references.append(read_flow(inst.output["flow"]))
def evaluate(self) -> Dict[str, float]:
EPE, n = 0, 1e-4
for pred_flow, gt_flow in zip(self.predictions, self.references):
mean_epe, _ = calculate_epe(pred_flow, gt_flow)
EPE += mean_epe
n += 1
EPE = EPE / n
return {"EPE": EPE}
def log_performance(model_name, task_name, metrics, root_path, output_file='performance_log.csv'):
import csv
file_exists = os.path.isfile(os.path.join(root_path, output_file))
row_data = {
'model': model_name,
'task': task_name,
'metrics': str(metrics)
}
with open(os.path.join(root_path, output_file), mode='a', newline='', encoding='utf-8') as f:
writer = csv.DictWriter(f, fieldnames=row_data.keys())
if not file_exists:
writer.writeheader()
writer.writerow(row_data)
def log_performance_detail(model_name, task_name, metrics, root_path, output_file='performance_log.csv'):
import csv
file_path = os.path.join(root_path, output_file)
file_exists = os.path.isfile(file_path)
# 从metrics字典中获取主要指标值
metric_value = None
if isinstance(metrics, dict):
# 按照优先级选择指标
for key in ['accuracy', 'f1', 'micro_f1', 'bleu4', 'rougeL', 'code_bleu', 'MAE']:
if key in metrics:
metric_value = metrics[key]
break
if metric_value is None and len(metrics) > 0:
# 如果没有找到优先指标,使用第一个指标
metric_value = list(metrics.values())[0]
else:
metric_value = metrics
# 简化文件名,只保留最后一部分
model_name = model_name.split('/')[-1]
if file_exists:
# 读取现有数据
rows = []
tasks = set()
with open(file_path, 'r', newline='', encoding='utf-8') as f:
reader = csv.reader(f)
header = next(reader, ['task', model_name]) # 如果文件为空,使用默认表头
if len(header) == 1: # 如果只有task列,添加model列
header.append(model_name)
rows.append(header)
# 读取现有数据并更新
for row in reader:
if row[0] == task_name: # 如果找到相同任务,更新值
row = [task_name, str(metric_value)]
tasks.add(row[0])
rows.append(row)
# 如果是新任务,添加新行
if task_name not in tasks:
rows.append([task_name, str(metric_value)])
else:
# 创建新文件
rows = [
['task', model_name],
[task_name, str(metric_value)]
]
# 写入所有数据
with open(file_path, 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
writer.writerows(rows)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--root_path", type=str, default="General-Bench-Openset/video/comprehension")
parser.add_argument("--model_name", type=str, default="ByteDance/Sa2VA-4B")
args = parser.parse_args()
root_path = args.root_path
model_name = args.model_name
model = Sa2VAModel(model_name=model_name)
task_files = [
"AnimalTrack",
"GreenWaterTrack",
"LongVideoHumanTrack",
"RelationMatch",
"UAVUAVTrack",
"BallTrack",
"HumanPartTrack",
"LongVideoVehicleTrack",
"ShapeMatch",
"UAVVehicleTrack",
"BlueWaterTrack",
"HumanTrack",
"MotionMatch",
"SizeMatch",
"VehicleTrack",
"ColorMatch",
"LOGOMarkerMatch",
"ObjectMarkerMatch",
"SyntheticSceneFlowEstimate",
"WhiteWaterTrack",
"ComplexSceneFlowEstimate",
"LongVideoAnimalTrack",
"OtherPartTrack",
"UAVBuildingTrack",
"YellowWaterTrack",
"CrowdTrack",
"LongVideoCrowdTrack",
"PanoramicFlowEstimate",
"UAVGeneralObjectTrack",
"GeneralObjectTrack",
"LongVideoGeneralObjectTrack",
"PositionMatch",
"UAVHumanTrack"]
task_files = [w + '.json' if not w.endswith('json') else w for w in task_files]
if isinstance(task_files, str):
task_files = [task_files]
for idx, filename in enumerate(task_files):
file_path = os.path.join(root_path, f"{filename.replace('.json', '')}/", filename)
if not os.path.exists(file_path):
continue
with open(file_path, 'r', encoding='utf-8') as f:
task_data = json.load(f)
task_type = task_data["type"]
task_name = task_data["task"]
print(f"Running evaluation for task {idx + 1}: {task_name}")
# 定义任务类型与任务类的映射字典
TASK_MAPPING = {
"AnimalTrack": TrackingTask,
"GreenWaterTrack": TrackingTask,
"LongVideoHumanTrack": TrackingTask,
"RelationMatch": MatchTask,
"UAVUAVTrack": TrackingTask,
"BallTrack": TrackingTask,
"HumanPartTrack": TrackingTask,
"LongVideoVehicleTrack": TrackingTask,
"ShapeMatch": MatchTask,
"UAVVehicleTrack": TrackingTask,
"BlueWaterTrack": TrackingTask,
"HumanTrack": TrackingTask,
"MotionMatch": MatchTask,
"SizeMatch": MatchTask,
"VehicleTrack": TrackingTask,
"ColorMatch": MatchTask,
"LOGOMarkerMatch": MatchTask,
"ObjectMarkerMatch": MatchTask,
"SyntheticSceneFlowEstimate": FlowTask,
"WhiteWaterTrack": TrackingTask,
"ComplexSceneFlowEstimate": FlowTask,
"LongVideoAnimalTrack": TrackingTask,
"OtherPartTrack": TrackingTask,
"UAVBuildingTrack": TrackingTask,
"YellowWaterTrack": TrackingTask,
"CrowdTrack": TrackingTask,
"LongVideoCrowdTrack": TrackingTask,
"PanoramicFlowEstimate": FlowTask,
"UAVGeneralObjectTrack": TrackingTask,
"GeneralObjectTrack": TrackingTask,
"LongVideoGeneralObjectTrack": TrackingTask,
"PositionMatch": MatchTask,
"UAVHumanTrack": TrackingTask,
}
# 根据 task_type 获取对应的任务类
task_class = TASK_MAPPING.get(task_type) # 使用精确匹配
if task_class is None:
raise NotImplementedError
else:
task = task_class(task_data, model)
task.run_inference()
metrics = task.evaluate()
print("Task name: ", task_name, "Task type: ", task_type, "Evaluation results:", metrics)
log_performance(model_name, task_name, metrics, root_path) |