File size: 15,678 Bytes
a17939e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from embeddings import TechEmbeddingLayer, create_padding_mask, create_causal_mask
class MultiHeadAttention(nn.Module):
    """Multi-head attention mechanism optimized for technical content"""    
    def __init__(self, d_model, n_heads, dropout=0.1):
        super(MultiHeadAttention, self).__init__()
        assert d_model % n_heads == 0        
        self.d_model = d_model
        self.n_heads = n_heads
        self.d_k = d_model // n_heads        
        self.w_q = nn.Linear(d_model, d_model, bias=False)
        self.w_k = nn.Linear(d_model, d_model, bias=False)
        self.w_v = nn.Linear(d_model, d_model, bias=False)
        self.w_o = nn.Linear(d_model, d_model)        
        self.dropout = nn.Dropout(dropout)
        self._init_weights()    
    def _init_weights(self):
        """Initialize weights with Xavier uniform"""
        for module in [self.w_q, self.w_k, self.w_v, self.w_o]:
            nn.init.xavier_uniform_(module.weight)    
    def forward(self, query, key, value, mask=None, pos_encoding=None):
        batch_size, seq_len, d_model = query.size()        
        Q = self.w_q(query).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
        K = self.w_k(key).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)
        V = self.w_v(value).view(batch_size, seq_len, self.n_heads, self.d_k).transpose(1, 2)        
        if pos_encoding is not None:
            Q, K = pos_encoding(Q, K)        
        scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)        
        if mask is not None:
            mask = mask.unsqueeze(1).expand(batch_size, self.n_heads, seq_len, seq_len)
            scores.masked_fill_(mask, float('-inf'))        
        attention_weights = F.softmax(scores, dim=-1)
        attention_weights = self.dropout(attention_weights)
        attended = torch.matmul(attention_weights, V)
        attended = attended.transpose(1, 2).contiguous().view(batch_size, seq_len, d_model)
        output = self.w_o(attended)        
        return output
class FeedForward(nn.Module):
    """Position-wise feed forward network with GELU activation"""    
    def __init__(self, d_model, dim_feedforward, dropout=0.1):
        super(FeedForward, self).__init__()
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.linear2 = nn.Linear(dim_feedforward, d_model)
        self.dropout = nn.Dropout(dropout)        
        nn.init.xavier_uniform_(self.linear1.weight)
        nn.init.xavier_uniform_(self.linear2.weight)    
    def forward(self, x):
        x = F.gelu(self.linear1(x))
        x = self.dropout(x)
        x = self.linear2(x)
        return x
class RecursionRouter(nn.Module):
    """Router to decide recursion steps for different types of technical problems"""    
    def __init__(self, d_model, max_steps=4, router_type="adaptive"):
        super(RecursionRouter, self).__init__()
        self.max_steps = max_steps
        self.router_type = router_type        
        if router_type == "adaptive":
            self.complexity_classifier = nn.Sequential(
                nn.Linear(d_model, d_model // 4),
                nn.GELU(),
                nn.Dropout(0.1),
                nn.Linear(d_model // 4, max_steps + 1),
                nn.Softmax(dim=-1)
            )
        elif router_type == "fixed":
            self.fixed_steps = max_steps    
    def forward(self, x):
        if self.router_type == "adaptive":
            seq_repr = x.mean(dim=1)
            step_probs = self.complexity_classifier(seq_repr)
            steps = torch.argmax(step_probs, dim=-1)
            return steps
        return self.fixed_steps
class RecursiveTransformerLayer(nn.Module):
    """Transformer layer with recursive computation capability"""    
    def __init__(self, d_model, n_heads, dim_feedforward, max_steps=4, 
                 dropout=0.1, router_type="adaptive"):
        super(RecursiveTransformerLayer, self).__init__()        
        self.max_steps = max_steps
        self.d_model = d_model        
        self.attention = MultiHeadAttention(d_model, n_heads, dropout)
        self.feedforward = FeedForward(d_model, dim_feedforward, dropout)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.router = RecursionRouter(d_model, max_steps, router_type)
        self.step_projections = nn.ModuleList([
            nn.Linear(d_model, d_model) for _ in range(max_steps)
        ])    
    def forward(self, x, mask=None, pos_encoding=None):
        steps = self.router(x)
        if isinstance(steps, int):
            num_steps = min(steps, self.max_steps)
            return self._recursive_forward_fixed(x, mask, num_steps, pos_encoding)
        return self._recursive_forward_adaptive(x, mask, steps, pos_encoding)    
    def _recursive_forward_fixed(self, x, mask, num_steps, pos_encoding):
        device = x.device
        batch_size = x.shape[0]
        computation_loss = torch.tensor(0.0, device=device)        
        for step in range(num_steps):
            step_input = self.step_projections[step](x) if step < len(self.step_projections) else x
            attended = self.attention(step_input, step_input, step_input, mask, pos_encoding)
            x = self.norm1(x + self.dropout(attended))
            fed_forward = self.feedforward(x)
            x = self.norm2(x + self.dropout(fed_forward))
            computation_loss += torch.tensor(0.1, device=device) * batch_size        
        return x, computation_loss    
    def _recursive_forward_adaptive(self, x, mask, steps, pos_encoding):
        batch_size, seq_len, d_model = x.shape
        device = x.device
        max_batch_steps = int(steps.max().item())
        computation_loss = torch.tensor(0.0, device=device)        
        active_batches = torch.ones(batch_size, device=device, dtype=torch.bool)
        for step in range(max_batch_steps):
            step_mask = (steps > step) & active_batches
            if not step_mask.any():
                break                
            step_input = self.step_projections[step](x) if step < len(self.step_projections) else x
            attended = self.attention(step_input, step_input, step_input, mask, pos_encoding)
            attended = torch.where(step_mask.unsqueeze(-1).unsqueeze(-1), attended, torch.zeros_like(attended))
            x = self.norm1(x + self.dropout(attended))
            fed_forward = self.feedforward(x)
            fed_forward = torch.where(step_mask.unsqueeze(-1).unsqueeze(-1), fed_forward, torch.zeros_like(fed_forward))
            x = self.norm2(x + self.dropout(fed_forward))
            computation_loss += torch.tensor(0.1, device=device) * step_mask.sum()
            active_batches &= (steps > step)        
        return x, computation_loss
class MixtureOfRecursions(nn.Module):
    """Main model with mixture of recursive transformer layers"""    
    def __init__(self, vocab_size, d_model=512, n_layers=6, n_heads=8, 
                 max_steps=4, dim_feedforward=2048, dropout=0.1, 
                 max_seq_len=512, router_type="adaptive", padding_idx=0):
        super(MixtureOfRecursions, self).__init__()        
        self.d_model = d_model
        self.vocab_size = vocab_size
        self.padding_idx = padding_idx        
        self.embeddings = TechEmbeddingLayer(
            vocab_size=vocab_size,
            d_model=d_model,
            max_seq_len=max_seq_len,
            dropout=dropout,
            padding_idx=padding_idx,
            pos_encoding="learned"
        )        
        self.layers = nn.ModuleList([
            RecursiveTransformerLayer(
                d_model=d_model,
                n_heads=n_heads,
                dim_feedforward=dim_feedforward,
                max_steps=max_steps,
                dropout=dropout,
                router_type=router_type
            ) for _ in range(n_layers)
        ])        
        self.final_norm = nn.LayerNorm(d_model)
        self.lm_head = nn.Linear(d_model, vocab_size, bias=False)
        self._init_weights()    
    def _init_weights(self):
        nn.init.xavier_uniform_(self.lm_head.weight)    
    def forward(self, input_ids, attention_mask=None):
        batch_size, seq_len = input_ids.shape        
        padding_mask = create_padding_mask(input_ids, self.padding_idx) if attention_mask is None else (attention_mask == 0)
        causal_mask = create_causal_mask(seq_len, input_ids.device)
        padding_mask = padding_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len)
        combined_mask = padding_mask | causal_mask.unsqueeze(0)        
        x = self.embeddings(input_ids)
        pos_encoding = self.embeddings.get_positional_encoding()        
        device = x.device
        total_computation_loss = torch.tensor(0.0, device=device)
        for layer in self.layers:
            x, comp_loss = layer(x, combined_mask, pos_encoding)
            total_computation_loss += comp_loss        
        x = self.final_norm(x)
        logits = self.lm_head(x)        
        return logits, total_computation_loss    
    def generate_step(self, input_ids, temperature=1.0, top_k=None, top_p=None):
        self.eval()
        with torch.no_grad():
            logits, _ = self.forward(input_ids)
            last_logits = logits[:, -1, :] / temperature            
            if top_k is not None:
                indices_to_remove = last_logits < torch.topk(last_logits, top_k)[0][..., -1, None]
                last_logits[indices_to_remove] = float('-inf')            
            if top_p is not None:
                sorted_logits, sorted_indices = torch.sort(last_logits, descending=True)
                cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                sorted_indices_to_remove[..., 0] = 0
                indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
                last_logits[indices_to_remove] = float('-inf')            
            probs = F.softmax(last_logits, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            return next_token
class TextGenerator:
    """Text generation utility for the tech model"""    
    def __init__(self, model, tokenizer, max_length=100, device=None):
        self.model = model
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.device = device if device else next(model.parameters()).device
        self.model.to(self.device)
        self.eos_token_id = tokenizer.vocab.get('<|endoftext|>', -1)
        self.assistant_token_id = tokenizer.vocab.get('<|assistant|>', -1)    
    def generate(self, prompt, method="nucleus", temperature=1.0, top_k=50, top_p=0.9, max_new_tokens=None):
        if max_new_tokens is None:
            max_new_tokens = self.max_length        
        input_text = f"<|user|> {prompt}"
        input_ids = self.tokenizer.encode_ids(input_text, add_special_tokens=True)
        input_tensor = torch.tensor([input_ids], device=self.device)        
        self.model.eval()
        generated_ids = []        
        with torch.no_grad():
            for _ in range(max_new_tokens):
                if input_tensor.size(1) > self.max_length:
                    input_tensor = input_tensor[:, -self.max_length:]                
                # Generate next token
                if method == "greedy":
                    next_token = self._greedy_generate(input_tensor)
                elif method == "sample":
                    next_token = self._sample_generate(input_tensor, temperature)
                elif method == "top_k":
                    next_token = self._top_k_generate(input_tensor, temperature, top_k)
                elif method == "nucleus" or method == "top_p":
                    next_token = self._nucleus_generate(input_tensor, temperature, top_p)
                else:
                    raise ValueError(f"Unknown generation method: {method}")                
                next_token_id = next_token.item()
                generated_ids.append(next_token_id)
                input_tensor = torch.cat([input_tensor, next_token.unsqueeze(0)], dim=1)
                if next_token_id == self.eos_token_id or (self.assistant_token_id != -1 and next_token_id == self.assistant_token_id):
                    break        
        # Decode the full sequence
        full_ids = input_ids + generated_ids
        full_text = self.tokenizer.decode_ids(full_ids, skip_special_tokens=False)        
        # Extract assistant response
        if "<|assistant|>" in full_text:
            response = full_text.split("<|assistant|>")[-1].split("<|endoftext|>")[0].strip()
        else:
            response = full_text.split("<|endoftext|>")[0].strip()        
        return response if response else "No response generated."    
    def _greedy_generate(self, input_tensor):
        logits, _ = self.model(input_tensor)
        return torch.argmax(logits[:, -1, :], dim=-1, keepdim=True)    
    def _sample_generate(self, input_tensor, temperature):
        logits, _ = self.model(input_tensor)
        logits = logits[:, -1, :] / temperature
        probs = F.softmax(logits, dim=-1)
        return torch.multinomial(probs, num_samples=1)   
    def _top_k_generate(self, input_tensor, temperature, top_k):
        logits, _ = self.model(input_tensor)
        logits = logits[:, -1, :] / temperature
        top_k_logits, top_k_indices = torch.topk(logits, top_k)
        probs = F.softmax(top_k_logits, dim=-1)
        next_token_idx = torch.multinomial(probs, num_samples=1)
        return top_k_indices.gather(-1, next_token_idx)    
    def _nucleus_generate(self, input_tensor, temperature, top_p):
        return self.model.generate_step(input_tensor, temperature, top_p=top_p)
def count_parameters(model):
    total_params = sum(p.numel() for p in model.parameters())
    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    return total_params, trainable_params
def main():
    vocab_size = 10000
    d_model = 512
    n_layers = 6
    n_heads = 8
    seq_len = 128
    batch_size = 4    
    print("Initializing MixtureOfRecursions model...")
    model = MixtureOfRecursions(
        vocab_size=vocab_size,
        d_model=d_model,
        n_layers=n_layers,
        n_heads=n_heads,
        max_steps=4,
        dim_feedforward=2048,
        dropout=0.1,
        router_type="adaptive"
    )    
    total_params, trainable_params = count_parameters(model)
    print(f"Total parameters: {total_params:,}")
    print(f"Trainable parameters: {trainable_params:,}")    
    print("\nTesting forward pass...")
    input_ids = torch.randint(0, vocab_size, (batch_size, seq_len))
    attention_mask = torch.ones_like(input_ids)
    attention_mask[:, -10:] = 0    
    print(f"Input shape: {input_ids.shape}")
    logits, comp_loss = model(input_ids, attention_mask)    
    print(f"Output logits shape: {logits.shape}")
    print(f"Computation loss: {comp_loss}")
    print(f"Expected logits shape: ({batch_size}, {seq_len}, {vocab_size})")    
    print("\nTesting generation step...")
    next_token = model.generate_step(input_ids[:1], temperature=0.8, top_p=0.9)
    print(f"Generated next token: {next_token}")    
    print("\nModel test completed successfully!")
if __name__ == "__main__":
    main()