import torch import torch.nn as nn import torch.nn.functional as F import math from typing import Optional, Tuple, List class PositionalEncoding(nn.Module): def __init__(self, d_model: int, max_seq_len: int = 5000, dropout: float = 0.1): super(PositionalEncoding, self).__init__() self.d_model = d_model self.dropout = nn.Dropout(dropout) pe = torch.zeros(max_seq_len, d_model) position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) if d_model % 2 == 1: pe[:, 1::2] = torch.cos(position * div_term[:-1]) else: pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): batch_size, seq_len, d_model = x.size() x = x + self.pe[:, :seq_len, :d_model] return self.dropout(x) class LearnedPositionalEmbedding(nn.Module): def __init__(self, max_seq_len: int, d_model: int, dropout: float = 0.1): super(LearnedPositionalEmbedding, self).__init__() self.max_seq_len = max_seq_len self.d_model = d_model self.pos_embedding = nn.Embedding(max_seq_len, d_model) self.dropout = nn.Dropout(dropout) nn.init.normal_(self.pos_embedding.weight, std=0.02) def forward(self, x): batch_size, seq_len, d_model = x.size() if seq_len > self.max_seq_len: raise ValueError(f"Sequence length {seq_len} exceeds maximum {self.max_seq_len}") positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, -1) pos_emb = self.pos_embedding(positions) x = x + pos_emb return self.dropout(x) class RotaryPositionalEmbedding(nn.Module): def __init__(self, d_model: int, max_seq_len: int = 2048, base: float = 10000.0): super(RotaryPositionalEmbedding, self).__init__() self.d_model = d_model self.max_seq_len = max_seq_len self.base = base inv_freq = 1.0 / (base ** (torch.arange(0, d_model, 2).float() / d_model)) self.register_buffer('inv_freq', inv_freq) self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None def _update_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype): if seq_len > self._seq_len_cached: self._seq_len_cached = seq_len t = torch.arange(seq_len, device=device, dtype=torch.float32) freqs = torch.outer(t, self.inv_freq) self._cos_cached = freqs.cos().to(dtype) self._sin_cached = freqs.sin().to(dtype) def forward(self, q: torch.Tensor, k: torch.Tensor, start_pos: int = 0) -> Tuple[torch.Tensor, torch.Tensor]: batch_size, seq_len, num_heads, head_dim = q.shape self._update_cos_sin_cache(start_pos + seq_len, q.device, q.dtype) cos = self._cos_cached[start_pos:start_pos + seq_len, :head_dim // 2] sin = self._sin_cached[start_pos:start_pos + seq_len, :head_dim // 2] cos = cos.view(1, seq_len, 1, -1) sin = sin.view(1, seq_len, 1, -1) q = q.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) k = k.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) q_rot = self._rotate_half(q, cos, sin) k_rot = self._rotate_half(k, cos, sin) q_rot = q_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) k_rot = k_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) return q_rot, k_rot def _rotate_half(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: x1 = x[..., :x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2:] return torch.cat([x1 * cos - x2 * sin, x1 * sin + x2 * cos], dim=-1) class TechEmbeddingLayer(nn.Module): def __init__(self, vocab_size: int, d_model: int, max_seq_len: int = 512, dropout: float = 0.1, padding_idx: int = 0, pos_encoding: str = "learned", layer_norm: bool = True): super(TechEmbeddingLayer, self).__init__() self.d_model = d_model self.vocab_size = vocab_size self.padding_idx = padding_idx self.token_embedding = nn.Embedding(vocab_size, d_model, padding_idx=padding_idx) self.pos_encoding_type = pos_encoding if pos_encoding == "sinusoidal": self.pos_encoding = PositionalEncoding(d_model, max_seq_len, dropout) elif pos_encoding == "learned": self.pos_encoding = LearnedPositionalEmbedding(max_seq_len, d_model, dropout) elif pos_encoding == "rope": self.pos_encoding = RotaryPositionalEmbedding(d_model, max_seq_len) else: raise ValueError(f"Unknown positional encoding type: {pos_encoding}") self.layer_norm = nn.LayerNorm(d_model) if layer_norm else nn.Identity() self.dropout = nn.Dropout(dropout) self._init_weights() def _init_weights(self): nn.init.normal_(self.token_embedding.weight, mean=0.0, std=0.02) if self.padding_idx is not None: nn.init.constant_(self.token_embedding.weight[self.padding_idx], 0.0) def forward(self, input_ids: torch.Tensor) -> torch.Tensor: if (input_ids >= self.vocab_size).any(): raise ValueError(f"Input IDs contain values >= vocab_size ({self.vocab_size})") embeddings = self.token_embedding(input_ids) if self.pos_encoding_type != "rope": embeddings = self.pos_encoding(embeddings) embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings def get_positional_encoding(self): return self.pos_encoding if self.pos_encoding_type == "rope" else None class AdaptiveEmbedding(nn.Module): def __init__(self, vocab_size: int, d_model: int, cutoffs: list = [2000, 10000], div_val: float = 4.0): super(AdaptiveEmbedding, self).__init__() self.vocab_size = vocab_size self.d_model = d_model self.cutoffs = [0] + cutoffs + [vocab_size] self.div_val = div_val self.embeddings = nn.ModuleList() self.projections = nn.ModuleList() for i in range(len(self.cutoffs) - 1): l_idx = self.cutoffs[i] r_idx = self.cutoffs[i + 1] d_emb = int(d_model / (div_val ** i)) emb = nn.Embedding(r_idx - l_idx, d_emb) nn.init.normal_(emb.weight, mean=0.0, std=0.02) self.embeddings.append(emb) if d_emb != d_model: proj = nn.Linear(d_emb, d_model, bias=False) nn.init.normal_(proj.weight, mean=0.0, std=0.02) self.projections.append(proj) else: self.projections.append(nn.Identity()) def forward(self, input_ids: torch.Tensor) -> torch.Tensor: if (input_ids >= self.vocab_size).any(): raise ValueError(f"Input IDs contain values >= vocab_size ({self.vocab_size})") batch_size, seq_len = input_ids.shape embeddings = torch.zeros(batch_size, seq_len, self.d_model, device=input_ids.device, dtype=torch.float32) for i in range(len(self.cutoffs) - 1): l_idx = self.cutoffs[i] r_idx = self.cutoffs[i + 1] mask = (input_ids >= l_idx) & (input_ids < r_idx) if mask.any(): indices = input_ids[mask] - l_idx indices = indices.clamp(max=r_idx - l_idx - 1) emb = self.embeddings[i](indices) emb = self.projections[i](emb) embeddings[mask] = emb return embeddings def create_padding_mask(input_ids: torch.Tensor, padding_idx: int = 0) -> torch.Tensor: return input_ids == padding_idx def create_causal_mask(seq_len: int, device: torch.device) -> torch.Tensor: return torch.triu(torch.ones(seq_len, seq_len, device=device), diagonal=1).bool() def create_attention_mask(input_ids: torch.Tensor, padding_idx: int = 0, causal: bool = True) -> torch.Tensor: batch_size, seq_len = input_ids.shape device = input_ids.device padding_mask = create_padding_mask(input_ids, padding_idx) padding_mask = padding_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len) if causal: causal_mask = create_causal_mask(seq_len, device) causal_mask = causal_mask.unsqueeze(0).expand(batch_size, seq_len, seq_len) combined_mask = padding_mask | causal_mask else: combined_mask = padding_mask return combined_mask class EmbeddingAnalyzer: def __init__(self, embedding_layer: nn.Module): self.embedding_layer = embedding_layer def get_similarity_matrix(self, tokens: List[int] = None) -> torch.Tensor: if hasattr(self.embedding_layer, 'token_embedding'): embeddings = self.embedding_layer.token_embedding.weight elif hasattr(self.embedding_layer, 'embeddings'): weights = [emb.weight for emb in self.embedding_layer.embeddings] embeddings = [] for i, w in enumerate(weights): proj = self.embedding_layer.projections[i] embeddings.append(proj(w)) embeddings = torch.cat(embeddings, dim=0) else: embeddings = self.embedding_layer.weight if tokens is not None and len(tokens) > 0: embeddings = embeddings[tokens] normalized_embeddings = F.normalize(embeddings, p=2, dim=1) return torch.mm(normalized_embeddings, normalized_embeddings.t()) def find_similar_tokens(self, token_id: int, top_k: int = 10) -> List[Tuple[int, float]]: similarity_matrix = self.get_similarity_matrix() similarities = similarity_matrix[token_id] top_similarities, top_indices = torch.topk(similarities, top_k + 1) mask = top_indices != token_id top_similarities = top_similarities[mask][:top_k] top_indices = top_indices[mask][:top_k] return list(zip(top_indices.tolist(), top_similarities.tolist())) def analyze_embedding_distribution(self): if hasattr(self.embedding_layer, 'token_embedding'): weights = self.embedding_layer.token_embedding.weight elif hasattr(self.embedding_layer, 'embeddings'): weights = torch.cat([emb.weight for emb in self.embedding_layer.embeddings], dim=0) else: weights = self.embedding_layer.weight stats = { 'mean': weights.mean().item(), 'std': weights.std().item(), 'min': weights.min().item(), 'max': weights.max().item(), 'norm_mean': weights.norm(dim=1).mean().item(), 'norm_std': weights.norm(dim=1).std().item() } return stats def test_embeddings(): print("Testing embedding layers...") vocab_size = 1000 d_model = 512 max_seq_len = 128 batch_size = 4 seq_len = 64 input_ids = torch.randint(1, vocab_size, (batch_size, seq_len)) embedding_types = [ ("Learned Position", "learned"), ("Sinusoidal Position", "sinusoidal"), ("RoPE", "rope") ] for name, pos_type in embedding_types: print(f"\nTesting {name} Embedding:") embedding_layer = TechEmbeddingLayer( vocab_size=vocab_size, d_model=d_model, max_seq_len=max_seq_len, pos_encoding=pos_type ) embeddings = embedding_layer(input_ids) print(f"Input shape: {input_ids.shape}") print(f"Output shape: {embeddings.shape}") print(f"Expected shape: ({batch_size}, {seq_len}, {d_model})") analyzer = EmbeddingAnalyzer(embedding_layer) stats = analyzer.analyze_embedding_distribution() print(f"Embedding statistics:") for key, value in stats.items(): print(f" {key}: {value:.4f}") print(f"\nTesting Adaptive Embeddings:") adaptive_emb = AdaptiveEmbedding( vocab_size=vocab_size, d_model=d_model, cutoffs=[200, 500], div_val=2.0 ) embeddings = adaptive_emb(input_ids) print(f"Adaptive embedding output shape: {embeddings.shape}") print(f"\nTesting masking functions:") input_ids_padded = input_ids.clone() input_ids_padded[:, -10:] = 0 padding_mask = create_padding_mask(input_ids_padded, padding_idx=0) causal_mask = create_causal_mask(seq_len, input_ids.device) attention_mask = create_attention_mask(input_ids_padded, padding_idx=0, causal=True) print(f"Padding mask shape: {padding_mask.shape}") print(f"Causal mask shape: {causal_mask.shape}") print(f"Attention mask shape: {attention_mask.shape}") print(f"Padding positions: {padding_mask.sum().item()}") print(f"Causal mask positions: {causal_mask.sum().item()}") print(f"Combined mask positions: {attention_mask.sum().item()}") print("\nAll embedding tests completed successfully!") if __name__ == "__main__": test_embeddings()