File size: 5,871 Bytes
0ebdd6d
 
6049b30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ebdd6d
 
 
 
6049b30
 
 
0ebdd6d
 
 
 
 
 
 
6049b30
0ebdd6d
 
6049b30
 
 
 
0ebdd6d
6049b30
0ebdd6d
 
 
 
 
 
 
 
 
6049b30
 
 
0ebdd6d
 
 
 
6049b30
 
 
0ebdd6d
 
 
 
6049b30
 
 
 
0ebdd6d
 
 
 
6049b30
 
 
 
 
 
 
 
 
 
 
0ebdd6d
 
 
 
6049b30
 
0ebdd6d
 
 
 
6049b30
 
 
 
 
 
0ebdd6d
 
 
 
 
 
6049b30
 
 
 
 
 
0ebdd6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
library_name: transformers
tags:
- code
- bug-fix
- code-generation
- code-repair
- codet5p
- ai
- machine-learning
- deep-learning
- huggingface
- finetuned-model
license: apache-2.0
datasets:
- Girinath11/aiml_code_debug_dataset
metrics:
- bleu
base_model:
- Salesforce/codet5p-220m
---

# Model Card for Model ID

This is a fine-tuned version of the [Salesforce/codet5p-220m](https://huggingface.co/Salesforce/codet5p-220m) model, specialized for real-world AI, ML, and Deep Learning code bug-fix tasks.
The model was trained on 150,000 code pairs (buggy → fixed) extracted from GitHub projects relevant to the AI/ML/GenAI ecosystem. 
It is optimized for suggesting correct code fixes from faulty code snippets and is highly effective for debugging and auto-correction in AI coding environments.

## Model Details

### Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** [Girinath V]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [Text-to-text Transformer (Encoder-Decoder)]
- **Language(s) (NLP):** [Programming (Python, some support for other AI/ML languages]
- **License:** [Apache 2.0]
- **Finetuned from model:** [[Salesforce/codet5p-220m](https://huggingface.co/Salesforce/codet5p-220m)]

### Model Sources:

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

### Direct Use

 -Fix real-world AI/ML/GenAI Python code bugs.
- Debug model training scripts, data pipelines, and inference code.
- Educational use for learning from code correction.


### Downstream Use [optional]

- Integrated into code review pipelines.
- LLM-enhanced IDE plugins for auto-fixing AI-related bugs.
- Assistant agents in AI-powered coding copilots.


### Out-of-Scope Use

- General-purpose natural language tasks.
- Code generation unrelated to AI/ML domains.
- Use on production code without human review.



## Bias, Risks, and Limitations

## Biases

- Model favors AI/ML/GenAI-related Python patterns.
- Not trained for full-stack or UI/frontend code debugging.

### Limitations

- May not generalize well outside its fine-tuned domain.
- Struggles with ambiguous or undocumented buggy code.




### Recommendations

- Use alongside human review.
- Combine with static analysis for best results.


## How to Get Started with the Model

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Girinath11/aiml_code_debug_model")
model = AutoModelForSeq2SeqLM.from_pretrained("Girinath11/aiml_code_debug_model")
inputs = tokenizer("buggy: def add(a,b) return a+b", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))


## Training Details

### Training Data

    -150,000 real-world buggy–fixed Python code pairs.

    -Data collected from GitHub AI/ML repositories.

    -Includes data cleaning, formatting, deduplication.



### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]