File size: 5,871 Bytes
0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d 6049b30 0ebdd6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
---
library_name: transformers
tags:
- code
- bug-fix
- code-generation
- code-repair
- codet5p
- ai
- machine-learning
- deep-learning
- huggingface
- finetuned-model
license: apache-2.0
datasets:
- Girinath11/aiml_code_debug_dataset
metrics:
- bleu
base_model:
- Salesforce/codet5p-220m
---
# Model Card for Model ID
This is a fine-tuned version of the [Salesforce/codet5p-220m](https://huggingface.co/Salesforce/codet5p-220m) model, specialized for real-world AI, ML, and Deep Learning code bug-fix tasks.
The model was trained on 150,000 code pairs (buggy → fixed) extracted from GitHub projects relevant to the AI/ML/GenAI ecosystem.
It is optimized for suggesting correct code fixes from faulty code snippets and is highly effective for debugging and auto-correction in AI coding environments.
## Model Details
### Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [Girinath V]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [Text-to-text Transformer (Encoder-Decoder)]
- **Language(s) (NLP):** [Programming (Python, some support for other AI/ML languages]
- **License:** [Apache 2.0]
- **Finetuned from model:** [[Salesforce/codet5p-220m](https://huggingface.co/Salesforce/codet5p-220m)]
### Model Sources:
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
### Direct Use
-Fix real-world AI/ML/GenAI Python code bugs.
- Debug model training scripts, data pipelines, and inference code.
- Educational use for learning from code correction.
### Downstream Use [optional]
- Integrated into code review pipelines.
- LLM-enhanced IDE plugins for auto-fixing AI-related bugs.
- Assistant agents in AI-powered coding copilots.
### Out-of-Scope Use
- General-purpose natural language tasks.
- Code generation unrelated to AI/ML domains.
- Use on production code without human review.
## Bias, Risks, and Limitations
## Biases
- Model favors AI/ML/GenAI-related Python patterns.
- Not trained for full-stack or UI/frontend code debugging.
### Limitations
- May not generalize well outside its fine-tuned domain.
- Struggles with ambiguous or undocumented buggy code.
### Recommendations
- Use alongside human review.
- Combine with static analysis for best results.
## How to Get Started with the Model
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Girinath11/aiml_code_debug_model")
model = AutoModelForSeq2SeqLM.from_pretrained("Girinath11/aiml_code_debug_model")
inputs = tokenizer("buggy: def add(a,b) return a+b", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
## Training Details
### Training Data
-150,000 real-world buggy–fixed Python code pairs.
-Data collected from GitHub AI/ML repositories.
-Includes data cleaning, formatting, deduplication.
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |