Feature Extraction
Transformers
Safetensors
English
GAR
custom_code
HaochenWang commited on
Commit
94d9370
·
verified ·
1 Parent(s): e4abfd8

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
chat_template.jinja ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {{- bos_token }}{%- if messages[0]['role'] == 'system' -%} {%- set system_message = messages[0]['content']|trim %}
2
+ {%- set messages = messages[1:] %}
3
+ {%- else %} {%- set system_message = 'You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.' %}{%- endif %}{{- '<|start_header_id|>system<|end_header_id|>\n\n' }}{{- system_message }}{{- '<|eot_id|>' }}{%- for message in messages %}{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' }}{%- for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<|image|>' }}{%- endfor %}{%- for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<|video|>' }}{%- endfor %}{%- for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{- content['text'] | trim }}{%- endfor %}{{'<|eot_id|>' }}{%- endfor %}{%- if add_generation_prompt %}{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{%- endif %}
config.json ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GARModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_gar.GARConfig",
7
+ "AutoModel": "modeling_gar.GARModel",
8
+ "AutoModelForCausalLM": "modeling_gar.GARModel"
9
+ },
10
+ "crop_tokens_ids": [
11
+ 128004,
12
+ 128005,
13
+ 128008,
14
+ 128010,
15
+ 128011
16
+ ],
17
+ "kernel_size": [
18
+ 14,
19
+ 14
20
+ ],
21
+ "mask_path_embedding_out_channels": 1024,
22
+ "mllm_config": {
23
+ "_name_or_path": "/mnt/bn/zilongdata-us/wangyuhao/model/Perception-LM-1B",
24
+ "architectures": [
25
+ "PerceptionLMForConditionalGeneration"
26
+ ],
27
+ "image_token_id": 128002,
28
+ "model_type": "perception_lm",
29
+ "projector_pooling_ratio": 2,
30
+ "text_config": {
31
+ "_name_or_path": "",
32
+ "add_cross_attention": false,
33
+ "architectures": null,
34
+ "attention_bias": false,
35
+ "attention_dropout": 0.0,
36
+ "bad_words_ids": null,
37
+ "begin_suppress_tokens": null,
38
+ "bos_token_id": 128000,
39
+ "chunk_size_feed_forward": 0,
40
+ "cross_attention_hidden_size": null,
41
+ "decoder_start_token_id": null,
42
+ "diversity_penalty": 0.0,
43
+ "do_sample": false,
44
+ "early_stopping": false,
45
+ "encoder_no_repeat_ngram_size": 0,
46
+ "eos_token_id": [
47
+ 128001,
48
+ 128009
49
+ ],
50
+ "exponential_decay_length_penalty": null,
51
+ "finetuning_task": null,
52
+ "forced_bos_token_id": null,
53
+ "forced_eos_token_id": null,
54
+ "head_dim": 64,
55
+ "hidden_act": "silu",
56
+ "hidden_size": 2048,
57
+ "id2label": {
58
+ "0": "LABEL_0",
59
+ "1": "LABEL_1"
60
+ },
61
+ "initializer_range": 0.02,
62
+ "intermediate_size": 8192,
63
+ "is_decoder": false,
64
+ "is_encoder_decoder": false,
65
+ "label2id": {
66
+ "LABEL_0": 0,
67
+ "LABEL_1": 1
68
+ },
69
+ "length_penalty": 1.0,
70
+ "max_length": 20,
71
+ "max_position_embeddings": 11520,
72
+ "min_length": 0,
73
+ "mlp_bias": false,
74
+ "model_type": "llama",
75
+ "no_repeat_ngram_size": 0,
76
+ "num_attention_heads": 32,
77
+ "num_beam_groups": 1,
78
+ "num_beams": 1,
79
+ "num_hidden_layers": 16,
80
+ "num_key_value_heads": 8,
81
+ "num_return_sequences": 1,
82
+ "output_attentions": false,
83
+ "output_hidden_states": false,
84
+ "output_scores": false,
85
+ "pad_token_id": null,
86
+ "prefix": null,
87
+ "pretraining_tp": 1,
88
+ "problem_type": null,
89
+ "pruned_heads": {},
90
+ "remove_invalid_values": false,
91
+ "repetition_penalty": 1.0,
92
+ "return_dict": true,
93
+ "return_dict_in_generate": false,
94
+ "rms_norm_eps": 1e-05,
95
+ "rope_scaling": {
96
+ "factor": 32.0,
97
+ "high_freq_factor": 4.0,
98
+ "low_freq_factor": 1.0,
99
+ "original_max_position_embeddings": 8192,
100
+ "rope_type": "llama3"
101
+ },
102
+ "rope_theta": 500000.0,
103
+ "sep_token_id": null,
104
+ "suppress_tokens": null,
105
+ "task_specific_params": null,
106
+ "temperature": 1.0,
107
+ "tf_legacy_loss": false,
108
+ "tie_encoder_decoder": false,
109
+ "tie_word_embeddings": true,
110
+ "tokenizer_class": null,
111
+ "top_k": 50,
112
+ "top_p": 1.0,
113
+ "torch_dtype": "bfloat16",
114
+ "torchscript": false,
115
+ "typical_p": 1.0,
116
+ "use_bfloat16": false,
117
+ "use_cache": true,
118
+ "use_flash_attn": true,
119
+ "vocab_size": 128262
120
+ },
121
+ "torch_dtype": "bfloat16",
122
+ "use_flash_attn": true,
123
+ "video_token_id": 128003,
124
+ "vision_config": {
125
+ "_name_or_path": "",
126
+ "add_cross_attention": false,
127
+ "architecture": "vit_pe_core_large_patch14_336",
128
+ "architectures": null,
129
+ "bad_words_ids": null,
130
+ "begin_suppress_tokens": null,
131
+ "bos_token_id": null,
132
+ "chunk_size_feed_forward": 0,
133
+ "cross_attention_hidden_size": null,
134
+ "decoder_start_token_id": null,
135
+ "diversity_penalty": 0.0,
136
+ "do_pooling": true,
137
+ "do_sample": false,
138
+ "early_stopping": false,
139
+ "encoder_no_repeat_ngram_size": 0,
140
+ "eos_token_id": null,
141
+ "exponential_decay_length_penalty": null,
142
+ "finetuning_task": null,
143
+ "forced_bos_token_id": null,
144
+ "forced_eos_token_id": null,
145
+ "global_pool": "map",
146
+ "initializer_range": 0.02,
147
+ "is_decoder": false,
148
+ "is_encoder_decoder": false,
149
+ "label_names": [
150
+ "LABEL_0",
151
+ "LABEL_1"
152
+ ],
153
+ "length_penalty": 1.0,
154
+ "max_length": 20,
155
+ "min_length": 0,
156
+ "model_args": {
157
+ "depth": 23,
158
+ "embed_dim": 1024,
159
+ "global_pool": "",
160
+ "img_size": [
161
+ 448,
162
+ 448
163
+ ],
164
+ "init_values": 0.1,
165
+ "ref_feat_shape": [
166
+ 32,
167
+ 32
168
+ ],
169
+ "use_post_transformer_norm": false
170
+ },
171
+ "model_type": "timm_wrapper",
172
+ "no_repeat_ngram_size": 0,
173
+ "num_beam_groups": 1,
174
+ "num_beams": 1,
175
+ "num_classes": 2,
176
+ "num_features": 1024,
177
+ "num_return_sequences": 1,
178
+ "output_attentions": false,
179
+ "output_hidden_states": false,
180
+ "output_scores": false,
181
+ "pad_token_id": null,
182
+ "prefix": null,
183
+ "pretrained_cfg": {
184
+ "classifier": "head",
185
+ "crop_mode": "center",
186
+ "crop_pct": 1.0,
187
+ "custom_load": false,
188
+ "first_conv": "patch_embed.proj",
189
+ "fixed_input_size": true,
190
+ "input_size": [
191
+ 3,
192
+ 336,
193
+ 336
194
+ ],
195
+ "interpolation": "bicubic",
196
+ "license": "custom",
197
+ "mean": [
198
+ 0.5,
199
+ 0.5,
200
+ 0.5
201
+ ],
202
+ "pool_size": null,
203
+ "std": [
204
+ 0.5,
205
+ 0.5,
206
+ 0.5
207
+ ],
208
+ "tag": "fb"
209
+ },
210
+ "problem_type": null,
211
+ "pruned_heads": {},
212
+ "remove_invalid_values": false,
213
+ "repetition_penalty": 1.0,
214
+ "return_dict": true,
215
+ "return_dict_in_generate": false,
216
+ "sep_token_id": null,
217
+ "suppress_tokens": null,
218
+ "task_specific_params": null,
219
+ "temperature": 1.0,
220
+ "tf_legacy_loss": false,
221
+ "tie_encoder_decoder": false,
222
+ "tie_word_embeddings": true,
223
+ "tokenizer_class": null,
224
+ "top_k": 50,
225
+ "top_p": 1.0,
226
+ "torch_dtype": "bfloat16",
227
+ "torchscript": false,
228
+ "typical_p": 1.0,
229
+ "use_bfloat16": false,
230
+ "use_flash_attn": false
231
+ },
232
+ "vision_use_cls_token": true
233
+ },
234
+ "model_type": "GAR",
235
+ "output_attentions": false,
236
+ "patch_size_h": 14,
237
+ "patch_size_w": 14,
238
+ "prompt_numbers": 5,
239
+ "max_num_tiles": 16,
240
+ "torch_dtype": "bfloat16",
241
+ "transformers_version": null
242
+ }
configuration_gar.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ from transformers.utils import logging
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers import AutoConfig, PerceptionLMConfig
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+
9
+ class GARConfig(PretrainedConfig):
10
+ model_type = 'GAR'
11
+ is_composition = True
12
+
13
+ def __init__(
14
+ self,
15
+ mllm_config=None,
16
+ prompt_numbers=5,
17
+ crop_tokens_ids=[128004, 128005, 128008, 128010, 128011],
18
+ use_flash_attn=True,
19
+ **kwargs,
20
+ ):
21
+ super().__init__(**kwargs)
22
+ if mllm_config is None:
23
+ mllm_config = {}
24
+ logger.info('mllm_config is None. Initializing the PerceptionLM with default values.')
25
+
26
+ if mllm_config is None:
27
+ self.mllm_config = AutoConfig.from_pretrained("facebook/Perception-LM-1B")
28
+ else:
29
+ self.mllm_config = PerceptionLMConfig(**mllm_config)
30
+ self.prompt_numbers = prompt_numbers
31
+
32
+ self.crop_tokens_ids = crop_tokens_ids
33
+ assert len(self.crop_tokens_ids) == self.prompt_numbers, f'{self.crop_tokens_ids} crop_tokens_ids length should be {self.prompt_numbers}'
34
+
35
+ try:
36
+ self.patch_size_h = self.mllm_config.vision_config.model_args["img_size"][0] // self.mllm_config.vision_config.model_args["ref_feat_shape"][0]
37
+ self.patch_size_w = self.mllm_config.vision_config.model_args["img_size"][1] // self.mllm_config.vision_config.model_args["ref_feat_shape"][1]
38
+ self.kernel_size = [self.patch_size_h, self.patch_size_w]
39
+ except:
40
+ self.patch_size_h = 16
41
+ self.patch_size_w = 16
42
+ self.kernel_size = [self.patch_size_h, self.patch_size_w]
43
+
44
+ try:
45
+ self.mask_path_embedding_out_channels = self.mllm_config.vision_config.num_features
46
+ except:
47
+ self.mask_path_embedding_out_channels = 1280
48
+
49
+ self.mllm_config.use_flash_attn = True if use_flash_attn else False
50
+ self.mllm_config.text_config.use_flash_attn = True if use_flash_attn else False
51
+ self.mllm_config.vision_config.use_flash_attn = False
52
+
53
+ def to_dict(self):
54
+ """
55
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
56
+
57
+ Returns:
58
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
59
+ """
60
+ output = copy.deepcopy(self.__dict__)
61
+ output['mllm_config'] = self.mllm_config.to_dict()
62
+ output['model_type'] = self.__class__.model_type
63
+ return output
image_processing_perception_lm_fast.py ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # *************************************************************************
2
+ # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
3
+ # difications”). All Bytedance Inc.'s Modifications are Copyright (2025) B-
4
+ # ytedance Inc..
5
+ # *************************************************************************
6
+
7
+ # Adapted from https://github.com/huggingface/transformers/blob/v4.55.4/src/transformers/models/perception_lm/image_processing_perception_lm_fast.py
8
+
9
+ # Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ """Fast Image processor class for PerceptionLM."""
22
+
23
+ import math
24
+ from functools import reduce
25
+ from typing import Optional, Union
26
+
27
+ import numpy as np
28
+ from transformers.image_processing_utils import BatchFeature
29
+ from transformers.image_processing_utils_fast import (
30
+ BaseImageProcessorFast,
31
+ DefaultFastImageProcessorKwargs,
32
+ get_image_size,
33
+ group_images_by_shape,
34
+ reorder_images,
35
+ )
36
+ from transformers.image_utils import (
37
+ IMAGENET_STANDARD_MEAN,
38
+ IMAGENET_STANDARD_STD,
39
+ ChannelDimension,
40
+ PILImageResampling,
41
+ )
42
+ from transformers.processing_utils import Unpack
43
+ from transformers.utils import (
44
+ TensorType,
45
+ auto_docstring,
46
+ is_torch_available,
47
+ is_torchvision_available,
48
+ )
49
+
50
+ if is_torch_available():
51
+ import torch
52
+
53
+ if is_torchvision_available():
54
+ from torchvision.transforms import functional as F
55
+
56
+
57
+ class PerceptionLMFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
58
+ r"""
59
+ vision_input_type (`str`, *optional*, defaults to `"thumb+tile"`):
60
+ Vision processing strategy. `"thumb+tile"` uses both thumbnails and multiple tiles for
61
+ multi-scale processing, otherwise uses single tile for lower memory usage.
62
+ tile_size (`int`, *optional*, defaults to `448`):
63
+ Height and width dimension (in pixels) of each tile used for image processing.
64
+ max_num_tiles (`int`, *optional*, defaults to `36`):
65
+ Maximum number of tiles an image can be split into based on its aspect ratio.
66
+ """
67
+
68
+ vision_input_type: str = "thumb+tile"
69
+ tile_size: int = 448
70
+ max_num_tiles: int = 36
71
+
72
+
73
+ @auto_docstring
74
+ class PerceptionLMImageProcessorFast(BaseImageProcessorFast):
75
+ resample = PILImageResampling.BICUBIC
76
+ image_mean = IMAGENET_STANDARD_MEAN
77
+ image_std = IMAGENET_STANDARD_STD
78
+ do_resize = True
79
+ do_center_crop = False
80
+ do_rescale = True
81
+ do_normalize = True
82
+ do_convert_rgb = True
83
+ size = {"width": 448, "height": 448} # for backward compatibility in tests
84
+ valid_kwargs = PerceptionLMFastImageProcessorKwargs
85
+
86
+ def __init__(self, **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs]) -> None:
87
+ super().__init__(**kwargs)
88
+
89
+ @auto_docstring
90
+ def preprocess(
91
+ self, images, **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs]
92
+ ) -> BatchFeature:
93
+ return super().preprocess(images, **kwargs)
94
+
95
+ @staticmethod
96
+ def _factors(n: int):
97
+ """Return all factors of a number."""
98
+ return set(
99
+ reduce(
100
+ list.__add__,
101
+ ([i, n // i] for i in range(1, int(n**0.5) + 1) if n % i == 0),
102
+ )
103
+ )
104
+
105
+ def _find_supported_aspect_ratios(self):
106
+ """
107
+ This function computes all the allowed aspect ratios for a fixed
108
+ number of input chunks. The order of returned items matters for the result of `_fit_image_to_canvas` function.
109
+ If tie exists in `_fit_image_to_canvas`, the latter in `_find_supported_aspect_ratios` wins.
110
+
111
+ For example, with `num_tiles=5`, it will return:
112
+ {
113
+ 0.2: [(1, 5)],
114
+ 5.0: [(5, 1)],
115
+ 0.25: [(1, 4)],
116
+ 1.0: [(2, 2), (1, 1)],
117
+ 4.0: [(4, 1)],
118
+ 0.3333333333333333: [(1, 3)],
119
+ 3.0: [(3, 1)],
120
+ 0.5: [(1, 2)],
121
+ 2.0: [(2, 1)]
122
+ }
123
+ """
124
+ asp_dict = {}
125
+ for chunk_size in range(self.max_num_tiles, 0, -1):
126
+ _factors = sorted(self._factors(chunk_size))
127
+ _asp_ratios = [(x, chunk_size // x) for x in _factors]
128
+ for ratio in _asp_ratios:
129
+ k = ratio[0] / ratio[1]
130
+ if k not in asp_dict:
131
+ asp_dict[k] = [ratio]
132
+ else:
133
+ asp_dict[k].append(ratio)
134
+ return asp_dict
135
+
136
+ def _get_image_height_width(
137
+ self, image_width: int, image_height: int, target_width: int, target_height: int
138
+ ) -> tuple[int, int]:
139
+ """
140
+ Given image width, height and target width, height for the canvas, return the dimensions of how the image would be resized
141
+ with aspect ratio preservation.
142
+ """
143
+ scale = image_width / image_height
144
+
145
+ if scale > 1.0:
146
+ # Width is larger than height
147
+
148
+ # Rescaling factor is the minimum of the two scaling factors. Else one side would be outside of the canvas.
149
+ rescaling_factor = min(
150
+ target_width / image_width, target_height / image_height
151
+ )
152
+
153
+ # Set new width to target width and height to the rescaled height.
154
+ new_w = rescaling_factor * image_width
155
+ new_h = math.floor(new_w / scale)
156
+
157
+ else:
158
+ # Height is larger than width
159
+
160
+ # Rescaling factor is the minimum of the two scaling factors. Else one side would be outside of the canvas.
161
+ rescaling_factor = min(
162
+ target_width / image_width, target_height / image_height
163
+ )
164
+
165
+ # Set new height to target height and width to the rescaled width.
166
+ new_h = rescaling_factor * image_height
167
+ new_w = math.floor(new_h * scale)
168
+
169
+ return new_w, new_h
170
+
171
+ def _fit_image_to_canvas(self, img_width: int, img_height: int, tile_size: int):
172
+ """
173
+ Given an image width, height and target number of chunks this function will see if the image
174
+ can be fit into any of the canvases that can be build from arranging the tiles in a grid.
175
+ If the image can be fit onto several canvases, it will return the canvas where the shorter edge
176
+ of the image will be largest.
177
+ """
178
+ # Initialize the optimal canvas to None. If no canvas is found where image fits, function returns None.
179
+ optimal_canvas = None
180
+ optimal_image_width_height = None
181
+
182
+ scale = img_width / img_height
183
+
184
+ # Gather all potential supported image resolutions and iterate through them to find best match
185
+ potential_arrangements = [
186
+ item
187
+ for sublist in self._find_supported_aspect_ratios().values()
188
+ for item in sublist
189
+ ]
190
+ for n_w, n_h in potential_arrangements:
191
+ # Compute the canvas size
192
+ canvas_width, canvas_height = n_w * tile_size, n_h * tile_size
193
+
194
+ # Check if image can fit into the canvas without downsampling
195
+ if canvas_width >= img_width and canvas_height >= img_height:
196
+ # If we did not find a good canvas yet, we will use the current one
197
+ if optimal_canvas is None:
198
+ # Set optimal canvas and determine the actual image height and width in the canvas with aspect ratio preserving resampling
199
+ optimal_canvas = (n_w, n_h)
200
+ optimal_image_width_height = self._get_image_height_width(
201
+ image_width=img_width,
202
+ image_height=img_height,
203
+ target_width=n_w * tile_size,
204
+ target_height=n_h * tile_size,
205
+ )
206
+ else:
207
+ # If we already found an optimal canvas before, we will check if the shorter edge of the image will be larger than the current optimal canvas.
208
+ # This means we can potentially upsample the image resolution which is beneficial to performance.
209
+ image_width_height = self._get_image_height_width(
210
+ image_width=img_width,
211
+ image_height=img_height,
212
+ target_width=n_w * tile_size,
213
+ target_height=n_h * tile_size,
214
+ )
215
+ # Llama3V dynamic tiling. Priortize biggest canvas.
216
+ if (
217
+ scale < 1.0
218
+ and (image_width_height[0] >= optimal_image_width_height[0])
219
+ ) or (
220
+ scale >= 1.0
221
+ and (image_width_height[1] >= optimal_image_width_height[1])
222
+ ):
223
+ optimal_canvas = (n_w, n_h)
224
+ optimal_image_width_height = image_width_height
225
+ return optimal_canvas
226
+
227
+ def _find_closest_aspect_ratio(
228
+ self, img_width: int, img_height: int, tile_size: int
229
+ ) -> tuple:
230
+ """
231
+ Given an image width, height and target number of chunks
232
+ this function will find the closest supported aspect ratio.
233
+ """
234
+ target_aspect_ratio = img_width / img_height
235
+ asp_dict = self._find_supported_aspect_ratios()
236
+ closest_aspect_ratio = None
237
+ if target_aspect_ratio >= 1:
238
+ closest_aspect_ratio = min(
239
+ [k for k in asp_dict if k <= target_aspect_ratio],
240
+ key=lambda x: abs(x - target_aspect_ratio),
241
+ )
242
+ tiles_given_aspect_ratio = asp_dict[closest_aspect_ratio]
243
+ # select largest width
244
+ return max(tiles_given_aspect_ratio, key=lambda x: x[0])
245
+ else:
246
+ closest_aspect_ratio = min(
247
+ [k for k in asp_dict if k > target_aspect_ratio],
248
+ key=lambda x: abs(1 / x - 1 / target_aspect_ratio),
249
+ )
250
+ tiles_given_aspect_ratio = asp_dict[closest_aspect_ratio]
251
+ # select largest height
252
+ return max(tiles_given_aspect_ratio, key=lambda x: x[1])
253
+
254
+ def _split(self, image: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
255
+ # Split image into number of required tiles (width x height)
256
+ batch_size, num_channels, height, width = image.size()
257
+ image = image.view(
258
+ batch_size, num_channels, nch, height // nch, ncw, width // ncw
259
+ )
260
+ # Permute dimensions to reorder the axes
261
+ image = image.permute(0, 2, 4, 1, 3, 5).contiguous()
262
+ # Reshape into the desired output shape (batch_size * 4, num_channels, width/2, height/2)
263
+ image = image.view(
264
+ batch_size, ncw * nch, num_channels, height // nch, width // ncw
265
+ )
266
+ return image
267
+
268
+ def resize(
269
+ self,
270
+ image: np.ndarray,
271
+ tile_size: int,
272
+ max_num_tiles: int,
273
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
274
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
275
+ ):
276
+ height, width = get_image_size(image, channel_dim=input_data_format)
277
+ if max_num_tiles > 1:
278
+ aspect_ratio = self._fit_image_to_canvas(
279
+ img_width=width, img_height=height, tile_size=tile_size
280
+ )
281
+ if aspect_ratio is None:
282
+ # If we did not find a canvas, we have to find the closest aspect ratio and downsample the image
283
+ aspect_ratio = self._find_closest_aspect_ratio(
284
+ img_width=width, img_height=height, tile_size=tile_size
285
+ )
286
+ else:
287
+ aspect_ratio = (1, 1)
288
+ new_width, new_height = aspect_ratio[0] * tile_size, aspect_ratio[1] * tile_size
289
+ image = F.resize(image, (new_height, new_width), interpolation=resample)
290
+ return image, aspect_ratio
291
+
292
+ def _preprocess(
293
+ self,
294
+ images: list["torch.Tensor"],
295
+ do_resize: bool,
296
+ do_rescale: Optional[bool],
297
+ rescale_factor: Optional[Union[int, float]],
298
+ do_normalize: Optional[bool],
299
+ image_mean: Optional[Union[float, list[float]]],
300
+ image_std: Optional[Union[float, list[float]]],
301
+ vision_input_type: str,
302
+ tile_size: int,
303
+ max_num_tiles: int,
304
+ return_tensors: Optional[Union[str, TensorType]],
305
+ disable_grouping: bool,
306
+ **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs],
307
+ ) -> BatchFeature:
308
+ # Group images by size for batched transformation
309
+
310
+ resample = kwargs.pop("resample", self.resample)
311
+
312
+ grouped_images, grouped_images_index = group_images_by_shape(
313
+ images, disable_grouping=disable_grouping
314
+ )
315
+ resized_images_grouped = {}
316
+ aspect_ratio = [1, 1]
317
+ for shape, stacked_images in grouped_images.items():
318
+ if do_resize:
319
+ if vision_input_type == "thumb+tile":
320
+ thumbnails, _ = self.resize(
321
+ stacked_images,
322
+ tile_size,
323
+ max_num_tiles=1,
324
+ resample=resample,
325
+ )
326
+ images_for_tiling, (tiles_w, tiles_h) = self.resize(
327
+ stacked_images,
328
+ tile_size,
329
+ max_num_tiles=max_num_tiles,
330
+ resample=resample,
331
+ )
332
+ image_tiles = self._split(images_for_tiling, tiles_w, tiles_h)
333
+ stacked_images = torch.cat(
334
+ [thumbnails.unsqueeze(1), image_tiles], dim=1
335
+ )
336
+ aspect_ratio = [tiles_w, tiles_h]
337
+ else: # vanilla single tile for low memory devices
338
+ stacked_images, _ = self.resize(
339
+ stacked_images,
340
+ tile_size,
341
+ max_num_tiles=1,
342
+ resample=resample,
343
+ )
344
+
345
+ resized_images_grouped[shape] = stacked_images
346
+ resized_images = reorder_images(resized_images_grouped, grouped_images_index)
347
+
348
+ grouped_images, grouped_images_index = group_images_by_shape(
349
+ resized_images, disable_grouping=disable_grouping
350
+ )
351
+ processed_images_grouped = {}
352
+ for shape, stacked_images in grouped_images.items():
353
+ # Fused rescale and normalize
354
+ stacked_images = self.rescale_and_normalize(
355
+ stacked_images,
356
+ do_rescale,
357
+ rescale_factor,
358
+ do_normalize,
359
+ image_mean,
360
+ image_std,
361
+ )
362
+ processed_images_grouped[shape] = stacked_images
363
+ processed_images = reorder_images(
364
+ processed_images_grouped, grouped_images_index
365
+ )
366
+ processed_images = [
367
+ p[None] if p.ndim == 3 else p for p in processed_images
368
+ ] # add tiles dimension if needed
369
+ processed_images = (
370
+ torch.stack(processed_images, dim=0) if return_tensors else processed_images
371
+ )
372
+ return BatchFeature(
373
+ data={"pixel_values": processed_images, "aspect_ratio": aspect_ratio},
374
+ tensor_type=return_tensors,
375
+ )
376
+
377
+
378
+ __all__ = ["PerceptionLMImageProcessorFast"]
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9314ba927fcef833a56fd3e3d664ff4093e27af6c8415ce808951a34061f393b
3
+ size 3068342248
modeling_gar.py ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+ from torch import nn
3
+ from transformers.modeling_outputs import CausalLMOutputWithPast
4
+ from transformers.utils import logging
5
+ from typing import Optional, Union
6
+ import torch
7
+ import torchvision
8
+ from torch import nn
9
+ from einops import rearrange
10
+ from transformers.modeling_utils import PreTrainedModel
11
+ from transformers import GenerationConfig
12
+
13
+ from .configuration_gar import GARConfig
14
+ from .modeling_perception_lm import PerceptionLMForConditionalGeneration
15
+
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+
20
+ class GARModel(PreTrainedModel):
21
+ config_class = GARConfig
22
+ main_input_name = 'pixel_values'
23
+ base_model_prefix = 'language_model'
24
+ _no_split_modules = ['LlamaDecoderLayer']
25
+ _supports_flash_attn_2 = True
26
+ supports_gradient_checkpointing = True
27
+
28
+ def __init__(
29
+ self,
30
+ config: GARConfig,
31
+ mllm=None,
32
+ mask_patch_embedding=None,
33
+ use_flash_attn=True,
34
+ ):
35
+ super().__init__(config)
36
+ use_flash_attn = use_flash_attn
37
+ config.mllm_config.use_flash_attn = True if use_flash_attn else False
38
+ config.mllm_config.text_config.use_flash_attn = True if use_flash_attn else False
39
+ config.mllm_config.vision_config.use_flash_attn = False
40
+
41
+ config.mllm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
42
+ config.mllm_config.vision_config._attn_implementation = 'eager'
43
+
44
+ self.prompt_numbers = config.prompt_numbers
45
+
46
+ if mllm is not None:
47
+ self.mllm = mllm
48
+ else:
49
+ self.mllm = PerceptionLMForConditionalGeneration(config.mllm_config)
50
+ if mask_patch_embedding is not None:
51
+ self.mask_patch_embedding = mask_patch_embedding
52
+ else:
53
+ self.mask_patch_embedding = nn.Conv2d(
54
+ in_channels=3,
55
+ out_channels=config.mask_path_embedding_out_channels,
56
+ kernel_size=config.kernel_size,
57
+ stride=config.kernel_size,
58
+ bias=False,
59
+ )
60
+
61
+ self.crop_tokens_ids = config.crop_tokens_ids
62
+
63
+ @property
64
+ def lm_head(self):
65
+ return self.mllm.model.language_model.get_output_embeddings()
66
+
67
+ def get_input_embeddings(self):
68
+ return self.mllm.model.language_model.get_input_embeddings()
69
+
70
+ def get_output_embeddings(self):
71
+ return self.mllm.model.language_model.get_output_embeddings()
72
+
73
+ def forward(self, data, data_samples=None, mode='loss'):
74
+ crop_tokens = self.crop_tokens_ids
75
+ # (batch_size, num_tiles, channels, height, width)
76
+ pixel_values = data['pixel_values'].to(self.mllm.device).to(self.mllm.dtype)
77
+ mask_values = torch.round((data['global_mask_values'] + 1.) / 2. * 255.).long().to(self.mllm.device)
78
+ mask_values = torch.clamp(mask_values, min=0, max=self.prompt_numbers)
79
+ assert mask_values.max() < self.prompt_numbers + 1 and mask_values.min() >= 0
80
+
81
+ mask_embeds = self.mask_patch_embedding((mask_values != self.prompt_numbers).to(self.mllm.dtype)) # binary mask
82
+ input_ids = data['input_ids']
83
+ aspect_ratios = data['aspect_ratios']
84
+ bboxes = data['bboxes']
85
+ assert input_ids.shape[0] == 1, "Currently only support batch_size=1"
86
+
87
+ inputs_embeds = self.mllm.get_input_embeddings()(input_ids)
88
+ labels = data['labels']
89
+
90
+ image_features = None
91
+ if pixel_values is not None:
92
+ image_features = self.mllm.get_image_features(
93
+ pixel_values=pixel_values.unsqueeze(0),
94
+ mask_embeds=mask_embeds,
95
+ )
96
+ image_features = image_features.to(inputs_embeds.device, dtype=inputs_embeds.dtype)
97
+ special_image_mask, _ = self.mllm.get_placeholder_mask(
98
+ input_ids, inputs_embeds=inputs_embeds, image_features=image_features
99
+ )
100
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
101
+
102
+ # feature replay
103
+ new_inputs_embeds = []
104
+ new_labels = []
105
+ image_features_tiles = rearrange(image_features[1:].unsqueeze(0), 'b n (h w) c -> b n c h w', h=16, w=16)
106
+ for batch_idx in range(inputs_embeds.shape[0]):
107
+ curr_inputs_embeds = inputs_embeds[batch_idx]
108
+ curr_labels = labels[batch_idx]
109
+ for crop_token in crop_tokens:
110
+ if crop_token in input_ids[batch_idx]:
111
+ target_mask = input_ids[batch_idx].eq(crop_token)
112
+ target_indices = target_mask.nonzero().squeeze()
113
+ head_idx = target_indices.min().item()
114
+ tail_idx = target_indices.max().item()
115
+ image_features_recover = self._merge(image_features_tiles, aspect_ratios[batch_idx][0], aspect_ratios[batch_idx][1])
116
+ feat_h, feat_w = image_features_recover.shape[2:]
117
+
118
+ x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
119
+ orig_h, orig_w = feat_h * 28, feat_w * 28
120
+
121
+ # origin box
122
+ roi_orig_x1 = x1 * orig_w
123
+ roi_orig_y1 = y1 * orig_h
124
+ roi_orig_x2 = x2 * orig_w
125
+ roi_orig_y2 = y2 * orig_h
126
+
127
+ # feat box
128
+ spatial_scale = feat_w / orig_w
129
+ roi_feat_x1 = roi_orig_x1 * spatial_scale
130
+ roi_feat_y1 = roi_orig_y1 * spatial_scale
131
+ roi_feat_x2 = roi_orig_x2 * spatial_scale
132
+ roi_feat_y2 = roi_orig_y2 * spatial_scale
133
+
134
+ roi = torch.tensor(
135
+ [0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2],
136
+ dtype=torch.float32, device=image_features_recover.device,
137
+ )
138
+
139
+ roi_features = torchvision.ops.roi_align(
140
+ input=image_features_recover.float(),
141
+ boxes=roi.unsqueeze(0),
142
+ output_size=(16, 16),
143
+ spatial_scale=spatial_scale,
144
+ sampling_ratio=2,
145
+ aligned=True,
146
+ )
147
+
148
+ image_features_replay = roi_features.permute(0, 2, 3, 1).flatten(1, 2).to(image_features_recover.dtype).squeeze()
149
+
150
+ curr_inputs_embeds = torch.cat([
151
+ curr_inputs_embeds[:head_idx],
152
+ image_features_replay,
153
+ curr_inputs_embeds[tail_idx+1:],
154
+ ])
155
+ curr_labels = torch.cat([
156
+ curr_labels[:head_idx],
157
+ -100 * torch.ones(image_features_replay.shape[0], dtype=torch.long, device=labels.device),
158
+ curr_labels[tail_idx+1:],
159
+ ])
160
+
161
+ assert curr_inputs_embeds.shape[0] == curr_labels.shape[0], f"shape mismatch, got {curr_inputs_embeds.shape[0]} != {curr_labels.shape[0]}"
162
+
163
+ new_inputs_embeds.append(curr_inputs_embeds.unsqueeze(0))
164
+ new_labels.append(curr_labels)
165
+
166
+ inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
167
+ labels = torch.cat(new_labels, dim=0)
168
+
169
+ skip_this_batch = False
170
+
171
+ if mode == "loss":
172
+ position_ids = torch.arange(0, inputs_embeds.shape[1], dtype=torch.long, device=inputs_embeds.device).unsqueeze(0).repeat(inputs_embeds.shape[0], 1)
173
+ attention_mask = torch.ones(inputs_embeds.shape[0], inputs_embeds.shape[1], dtype=torch.long, device=inputs_embeds.device)
174
+ use_cache = False
175
+
176
+ outputs, _skip_this_case = self._llm_forward(
177
+ inputs_embeds=inputs_embeds,
178
+ position_ids=position_ids,
179
+ attention_mask=attention_mask,
180
+ labels=labels,
181
+ use_cache=use_cache
182
+ )
183
+
184
+ if skip_this_batch or _skip_this_case:
185
+ print("skip this batch!")
186
+ loss_dict = {'loss': outputs.loss * 0.0}
187
+ else:
188
+ loss_dict = {'loss': outputs.loss}
189
+ return loss_dict
190
+
191
+ elif mode == "predict":
192
+ pass
193
+ elif mode == "tensor":
194
+ pass
195
+ else:
196
+ raise NotImplementedError
197
+
198
+ return outputs
199
+
200
+ def _merge(self, tiles: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
201
+ batch_size, num_tiles, num_channels, tile_height, tile_width = tiles.size()
202
+ assert num_tiles == ncw * nch, f"{ncw * nch} != {num_tiles}"
203
+
204
+ tiles = tiles.view(batch_size, nch, ncw, num_channels, tile_height, tile_width)
205
+ tiles = tiles.permute(0, 3, 1, 4, 2, 5).contiguous()
206
+
207
+ original_height = nch * tile_height
208
+ original_width = ncw * tile_width
209
+
210
+ image = tiles.view(batch_size, num_channels, original_height, original_width)
211
+
212
+ return image
213
+
214
+ def _llm_forward(
215
+ self,
216
+ inputs_embeds: torch.FloatTensor,
217
+ input_ids: torch.LongTensor = None,
218
+ attention_mask: Optional[torch.Tensor] = None,
219
+ position_ids: Optional[torch.LongTensor] = None,
220
+ image_flags: Optional[torch.LongTensor] = None,
221
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
222
+ labels: Optional[torch.LongTensor] = None,
223
+ use_cache: Optional[bool] = None,
224
+ output_attentions: Optional[bool] = None,
225
+ output_hidden_states: Optional[bool] = None,
226
+ return_dict: Optional[bool] = None,
227
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
228
+ return_dict = return_dict if return_dict is not None \
229
+ else self.mllm.config.use_return_dict
230
+ skip_this_case = False
231
+
232
+ outputs = self.mllm(
233
+ inputs_embeds=inputs_embeds,
234
+ attention_mask=attention_mask,
235
+ position_ids=position_ids,
236
+ labels=labels,
237
+ past_key_values=past_key_values,
238
+ use_cache=use_cache,
239
+ output_attentions=output_attentions,
240
+ output_hidden_states=output_hidden_states,
241
+ return_dict=return_dict,
242
+ )
243
+
244
+ return outputs, skip_this_case
245
+
246
+ @torch.no_grad()
247
+ def generate(
248
+ self,
249
+ pixel_values: Optional[torch.FloatTensor] = None,
250
+ global_mask_values: Optional[torch.LongTensor] = None,
251
+ aspect_ratios: Optional[torch.FloatTensor] = None,
252
+ bboxes: Optional[torch.FloatTensor] = None,
253
+ input_ids: Optional[torch.FloatTensor] = None,
254
+ attention_mask: Optional[torch.LongTensor] = None,
255
+ generation_config: Optional[GenerationConfig] = None,
256
+ output_hidden_states: Optional[bool] = None,
257
+ return_dict: Optional[bool] = None,
258
+ **generate_kwargs,
259
+ ) -> torch.LongTensor:
260
+ device = self.device
261
+
262
+ if pixel_values is not None:
263
+ pixel_values = pixel_values.to(device).to(self.mllm.dtype)
264
+ if global_mask_values is not None:
265
+
266
+ mask_values = torch.round((global_mask_values + 1.) / 2. * 255.).long().to(device)
267
+ mask_values = torch.clamp(mask_values, min=0, max=self.prompt_numbers)
268
+
269
+ assert mask_values.max() < self.prompt_numbers + 1 and mask_values.min() >= 0, f"max: {mask_values.max()}, min: {mask_values.min()}"
270
+ mask_embeds = self.mask_patch_embedding((mask_values != self.prompt_numbers).to(self.mllm.dtype))
271
+ else:
272
+ mask_embeds = None
273
+
274
+ inputs_embeds = self.mllm.get_input_embeddings()(input_ids)
275
+
276
+ image_features = self.mllm.get_image_features(
277
+ pixel_values=pixel_values.unsqueeze(0),
278
+ mask_embeds=mask_embeds,
279
+ )
280
+ image_features = image_features.to(inputs_embeds.device, dtype=inputs_embeds.dtype)
281
+ special_image_mask, _ = self.mllm.get_placeholder_mask(
282
+ input_ids, inputs_embeds=inputs_embeds, image_features=image_features
283
+ )
284
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
285
+
286
+ # feature replay
287
+ new_inputs_embeds = []
288
+ image_features_tiles = rearrange(image_features[1:].unsqueeze(0), 'b n (h w) c -> b n c h w', h=16, w=16)
289
+ for batch_idx in range(inputs_embeds.shape[0]):
290
+ curr_inputs_embeds = inputs_embeds[batch_idx]
291
+ for crop_token in self.crop_tokens_ids:
292
+ if crop_token in input_ids[batch_idx]:
293
+ target_mask = input_ids[batch_idx].eq(crop_token)
294
+ target_indices = target_mask.nonzero().squeeze()
295
+ head_idx = target_indices.min().item()
296
+ tail_idx = target_indices.max().item()
297
+ image_features_recover = self._merge(image_features_tiles, aspect_ratios[batch_idx][0], aspect_ratios[batch_idx][1])
298
+ feat_h, feat_w = image_features_recover.shape[2:]
299
+ x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
300
+ orig_h, orig_w = feat_h * 28, feat_w * 28
301
+
302
+ # origin box
303
+ roi_orig_x1 = x1 * orig_w
304
+ roi_orig_y1 = y1 * orig_h
305
+ roi_orig_x2 = x2 * orig_w
306
+ roi_orig_y2 = y2 * orig_h
307
+
308
+ # feat box
309
+ spatial_scale = feat_w / orig_w
310
+ roi_feat_x1 = roi_orig_x1 * spatial_scale
311
+ roi_feat_y1 = roi_orig_y1 * spatial_scale
312
+ roi_feat_x2 = roi_orig_x2 * spatial_scale
313
+ roi_feat_y2 = roi_orig_y2 * spatial_scale
314
+
315
+ roi = torch.tensor(
316
+ [0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2],
317
+ dtype=torch.float32, device=image_features_recover.device,
318
+ )
319
+
320
+ roi_features = torchvision.ops.roi_align(
321
+ input=image_features_recover.float(),
322
+ boxes=roi.unsqueeze(0),
323
+ output_size=(16, 16),
324
+ spatial_scale=spatial_scale,
325
+ sampling_ratio=2,
326
+ aligned=True,
327
+ )
328
+
329
+ image_features_replay = roi_features.permute(0, 2, 3, 1).flatten(1, 2).to(image_features_recover.dtype).squeeze()
330
+
331
+ curr_inputs_embeds = torch.cat([
332
+ curr_inputs_embeds[:head_idx],
333
+ image_features_replay,
334
+ curr_inputs_embeds[tail_idx+1:],
335
+ ])
336
+
337
+ new_inputs_embeds.append(curr_inputs_embeds.unsqueeze(0))
338
+ inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
339
+ else:
340
+ inputs_embeds = self.mllm.get_input_embeddings()(input_ids)
341
+
342
+ outputs = self.mllm.generate(
343
+ inputs_embeds=inputs_embeds,
344
+ attention_mask=attention_mask,
345
+ generation_config=generation_config,
346
+ output_hidden_states=output_hidden_states,
347
+ # return_dict=return_dict,
348
+ use_cache=True,
349
+ return_dict_in_generate=True,
350
+ )
351
+
352
+ return outputs
modeling_perception_lm.py ADDED
@@ -0,0 +1,865 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # *************************************************************************
2
+ # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
3
+ # difications”). All Bytedance Inc.'s Modifications are Copyright (2025) B-
4
+ # ytedance Inc..
5
+ # *************************************************************************
6
+
7
+ # Adapted from https://github.com/huggingface/transformers/blob/v4.55.4/src/transformers/models/perception_lm/modeling_perception_lm.py
8
+
9
+ # coding=utf-8
10
+ # Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
11
+ # Licensed under the Apache License, Version 2.0 (the "License");
12
+ # you may not use this file except in compliance with the License.
13
+ # You may obtain a copy of the License at
14
+ #
15
+ # http://www.apache.org/licenses/LICENSE-2.0
16
+ #
17
+ # Unless required by applicable law or agreed to in writing, software
18
+ # distributed under the License is distributed on an "AS IS" BASIS,
19
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
+ # See the License for the specific language governing permissions and
21
+ # limitations under the License.
22
+
23
+ import math
24
+ from dataclasses import dataclass
25
+ from typing import Optional, Union
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ import torchvision
30
+ from einops import rearrange
31
+ from timm.models._manipulate import checkpoint
32
+ from torch import nn
33
+ from transformers import AutoModel, PerceptionLMConfig
34
+ from transformers.generation import GenerationMixin
35
+ from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.utils import auto_docstring, can_return_tuple
38
+
39
+
40
+ class PerceptionLMAdaptiveAvgPooling(nn.Module):
41
+ def __init__(self, pooling_ratio=2):
42
+ super().__init__()
43
+ self.pooling_ratio = pooling_ratio
44
+
45
+ def forward(self, hidden_states):
46
+ b, num_tokens, c = hidden_states.shape
47
+ h = int(math.sqrt(num_tokens))
48
+ if h * h != num_tokens:
49
+ raise ValueError(
50
+ f"num_tokens {num_tokens} is expected to be a square number"
51
+ )
52
+
53
+ shape = (h // self.pooling_ratio, h // self.pooling_ratio)
54
+ hidden_states = hidden_states.permute(0, 2, 1).reshape(b, -1, h, h)
55
+ hidden_states = F.adaptive_avg_pool2d(hidden_states, shape)
56
+ hidden_states = hidden_states.flatten(2).transpose(1, 2)
57
+
58
+ return hidden_states
59
+
60
+
61
+ class PerceptionLMMultiModalProjector(nn.Module):
62
+ def __init__(self, config: PerceptionLMConfig):
63
+ super().__init__()
64
+ input_size = config.vision_config.model_args["embed_dim"]
65
+ output_size = config.text_config.hidden_size
66
+ self.linear_1 = nn.Linear(
67
+ in_features=input_size,
68
+ out_features=output_size,
69
+ bias=True,
70
+ )
71
+ self.gelu = nn.GELU()
72
+ self.linear_2 = nn.Linear(
73
+ in_features=output_size,
74
+ out_features=output_size,
75
+ bias=True,
76
+ )
77
+ self.pooling = (
78
+ PerceptionLMAdaptiveAvgPooling(config.projector_pooling_ratio)
79
+ if config.projector_pooling_ratio > 1
80
+ else nn.Identity()
81
+ )
82
+
83
+ def forward(self, features):
84
+ features = features.permute(1, 0, 2) # NLD -> LND
85
+ features = self.linear_1(features)
86
+ features = self.gelu(features)
87
+ features = self.linear_2(features)
88
+ features = features.permute(1, 0, 2) # LND -> NLD
89
+ features = self.pooling(features)
90
+ return features
91
+
92
+
93
+ @auto_docstring
94
+ class PerceptionLMPreTrainedModel(PreTrainedModel):
95
+ config: PerceptionLMConfig
96
+ base_model_prefix = "model"
97
+ supports_gradient_checkpointing = True
98
+ _skip_keys_device_placement = "past_key_values"
99
+
100
+ _supports_flash_attn = True
101
+ _supports_sdpa = True
102
+
103
+ _can_compile_fullgraph = True
104
+ _supports_flex_attn = True
105
+ _supports_attention_backend = True
106
+
107
+
108
+ @dataclass
109
+ @auto_docstring(
110
+ custom_intro="""
111
+ Base class for PerceptionLM outputs, with hidden states and attentions.
112
+ """
113
+ )
114
+ class PerceptionLMModelOutputWithPast(BaseModelOutputWithPast):
115
+ r"""
116
+ past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
117
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
118
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
119
+
120
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
121
+ `past_key_values` input) to speed up sequential decoding.
122
+ image_hidden_states (`torch.FloatTensor`, *optional*):
123
+ A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
124
+ Image hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
125
+ video_hidden_states (`torch.FloatTensor`, *optional*):
126
+ A `torch.FloatTensor` of size `(batch_size, num_videos, sequence_length, hidden_size)`.
127
+ Video hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
128
+ """
129
+
130
+ image_hidden_states: Optional[torch.FloatTensor] = None
131
+
132
+ video_hidden_states: Optional[torch.FloatTensor] = None
133
+
134
+
135
+ @dataclass
136
+ @auto_docstring(
137
+ custom_intro="""
138
+ Base class for PerceptionLM causal language model (or autoregressive) outputs.
139
+ """
140
+ )
141
+ class PerceptionLMCausalLMOutputWithPast(ModelOutput):
142
+ r"""
143
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
144
+ Language modeling loss (for next-token prediction).
145
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
146
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
147
+ past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
148
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
149
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
150
+
151
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
152
+ `past_key_values` input) to speed up sequential decoding.
153
+ image_hidden_states (`torch.FloatTensor`, *optional*):
154
+ A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
155
+ Image hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
156
+ video_hidden_states (`torch.FloatTensor`, *optional*):
157
+ A `torch.FloatTensor` of size `(batch_size, num_videos, sequence_length, hidden_size)`.
158
+ Video hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
159
+ """
160
+
161
+ loss: Optional[torch.FloatTensor] = None
162
+ logits: Optional[torch.FloatTensor] = None
163
+ past_key_values: Optional[list[torch.FloatTensor]] = None
164
+ hidden_states: Optional[tuple[torch.FloatTensor]] = None
165
+ attentions: Optional[tuple[torch.FloatTensor]] = None
166
+ image_hidden_states: Optional[torch.FloatTensor] = None
167
+
168
+ video_hidden_states: Optional[torch.FloatTensor] = None
169
+
170
+
171
+ @auto_docstring
172
+ class PerceptionLMModel(PerceptionLMPreTrainedModel):
173
+ _checkpoint_conversion_mapping = {}
174
+
175
+ def __init__(self, config: PerceptionLMConfig):
176
+ super().__init__(config)
177
+ self.vision_tower = AutoModel.from_config(config.vision_config)
178
+
179
+ def custom_forward_features(
180
+ self,
181
+ x: torch.Tensor,
182
+ mask_embeds: Optional[torch.Tensor] = None,
183
+ ) -> torch.Tensor:
184
+ """Forward pass through feature extraction layers.
185
+
186
+ Args:
187
+ x: Input tensor.
188
+
189
+ Returns:
190
+ Feature tensor.
191
+ """
192
+ x = self.patch_embed(x)
193
+ if mask_embeds is not None:
194
+ x = x + mask_embeds.flatten(2).transpose(1, 2)
195
+ x, rot_pos_embed = self._pos_embed(x)
196
+ x = self.norm_pre(x)
197
+
198
+ if getattr(self, "rope_mixed", False) and rot_pos_embed is not None:
199
+ # Handle depth-dependent embeddings for mixed mode
200
+ # pos embed has shape (depth, num_heads, H*W, dim) or (depth, batch_size, num_heads, H*W, dim)
201
+ for i, blk in enumerate(self.blocks):
202
+ if self.grad_checkpointing and not torch.jit.is_scripting():
203
+ x = checkpoint(blk, x, rope=rot_pos_embed[i])
204
+ else:
205
+ x = blk(x, rope=rot_pos_embed[i])
206
+ else:
207
+ # Standard path for non-mixed mode
208
+ for blk in self.blocks:
209
+ if self.grad_checkpointing and not torch.jit.is_scripting():
210
+ x = checkpoint(blk, x, rope=rot_pos_embed)
211
+ else:
212
+ x = blk(x, rope=rot_pos_embed)
213
+
214
+ x = self.norm(x)
215
+ return x
216
+
217
+ self.vision_tower.timm_model.forward_features = custom_forward_features.__get__(
218
+ self.vision_tower.timm_model
219
+ )
220
+
221
+ self.multi_modal_projector = PerceptionLMMultiModalProjector(config)
222
+ self.language_model = AutoModel.from_config(config.text_config)
223
+ self.post_init()
224
+
225
+ def get_input_embeddings(self):
226
+ return self.language_model.get_input_embeddings()
227
+
228
+ def set_input_embeddings(self, value):
229
+ self.language_model.set_input_embeddings(value)
230
+
231
+ def set_decoder(self, decoder):
232
+ self.language_model = decoder
233
+
234
+ def get_decoder(self):
235
+ return self.language_model
236
+
237
+ def get_image_features(
238
+ self,
239
+ pixel_values: torch.FloatTensor,
240
+ mask_embeds: Optional[torch.FloatTensor] = None,
241
+ **kwargs,
242
+ ):
243
+ """
244
+ Obtains image last hidden states from the vision tower and apply multimodal projection.
245
+
246
+ Args:
247
+ pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_tiles, channels, height, width)`)
248
+ The tensors corresponding to the input images.
249
+ Returns:
250
+ image_features (`torch.Tensor`): Image feature tensor of shape `(num_tiles, num_patches, embed_dim)`).
251
+ """
252
+ if len(pixel_values.shape) == 5:
253
+ pixel_values = pixel_values.flatten(0, 1)
254
+ assert (
255
+ len(pixel_values.shape) == 4
256
+ ), f"pixel_values should be of shape (batch_size * num_tiles, channels, height, width). But got {pixel_values.shape}."
257
+ # pre-mask
258
+ image_outputs = self.vision_tower(pixel_values, mask_embeds=mask_embeds)
259
+ # image_outputs = self.vision_tower(pixel_values)
260
+ image_outputs = image_outputs.last_hidden_state
261
+ if self.config.vision_use_cls_token:
262
+ image_outputs = image_outputs[:, 1:, :]
263
+ # post-mask
264
+ # if mask_embeds is not None:
265
+ # image_outputs = image_outputs + mask_embeds.flatten(2).transpose(1, 2)
266
+ image_features = self.multi_modal_projector(image_outputs)
267
+ return image_features
268
+
269
+ def get_placeholder_mask(
270
+ self,
271
+ input_ids: torch.LongTensor,
272
+ inputs_embeds: torch.FloatTensor,
273
+ image_features: torch.FloatTensor = None,
274
+ video_features: torch.FloatTensor = None,
275
+ ):
276
+ """
277
+ Obtains multimodal placeholdr mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
278
+ equal to the length of multimodal features. If the lengths are different, an error is raised.
279
+ """
280
+ if input_ids is None:
281
+ special_image_mask = inputs_embeds == self.get_input_embeddings()(
282
+ torch.tensor(
283
+ self.config.image_token_id,
284
+ dtype=torch.long,
285
+ device=inputs_embeds.device,
286
+ )
287
+ )
288
+ special_image_mask = special_image_mask.all(-1)
289
+ special_video_mask = inputs_embeds == self.get_input_embeddings()(
290
+ torch.tensor(
291
+ self.config.video_token_id,
292
+ dtype=torch.long,
293
+ device=inputs_embeds.device,
294
+ )
295
+ )
296
+ special_video_mask = special_video_mask.all(-1)
297
+ else:
298
+ special_image_mask = input_ids == self.config.image_token_id
299
+ special_video_mask = input_ids == self.config.video_token_id
300
+
301
+ n_image_tokens = special_image_mask.sum()
302
+ special_image_mask = (
303
+ special_image_mask.unsqueeze(-1)
304
+ .expand_as(inputs_embeds)
305
+ .to(inputs_embeds.device)
306
+ )
307
+ if (
308
+ image_features is not None
309
+ and inputs_embeds[special_image_mask].numel() != image_features.numel()
310
+ ):
311
+ raise ValueError(
312
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.size()[:-1].numel()}"
313
+ )
314
+
315
+ n_video_tokens = special_video_mask.sum()
316
+ special_video_mask = (
317
+ special_video_mask.unsqueeze(-1)
318
+ .expand_as(inputs_embeds)
319
+ .to(inputs_embeds.device)
320
+ )
321
+ if (
322
+ video_features is not None
323
+ and inputs_embeds[special_video_mask].numel() != video_features.numel()
324
+ ):
325
+ raise ValueError(
326
+ f"Videos features and image tokens do not match: tokens: {n_video_tokens}, features {video_features.size()[:-1].numel()}"
327
+ )
328
+
329
+ return special_image_mask, special_video_mask
330
+
331
+ @can_return_tuple
332
+ @auto_docstring
333
+ def forward(
334
+ self,
335
+ input_ids: Optional[torch.LongTensor] = None,
336
+ pixel_values: Optional[torch.FloatTensor] = None,
337
+ mask_embeds: Optional[torch.FloatTensor] = None,
338
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
339
+ attention_mask: Optional[torch.Tensor] = None, # need
340
+ position_ids: Optional[torch.LongTensor] = None, # need
341
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
342
+ inputs_embeds: Optional[torch.FloatTensor] = None, # need
343
+ use_cache: Optional[bool] = None, # need
344
+ output_attentions: Optional[bool] = None,
345
+ output_hidden_states: Optional[bool] = None,
346
+ cache_position: Optional[torch.LongTensor] = None,
347
+ logits_to_keep: Union[int, torch.Tensor] = 0,
348
+ **lm_kwargs,
349
+ ) -> Union[tuple, PerceptionLMModelOutputWithPast]:
350
+ output_attentions = (
351
+ output_attentions
352
+ if output_attentions is not None
353
+ else self.config.output_attentions
354
+ )
355
+ output_hidden_states = (
356
+ output_hidden_states
357
+ if output_hidden_states is not None
358
+ else self.config.output_hidden_states
359
+ )
360
+ if (input_ids is None) ^ (inputs_embeds is not None):
361
+ raise ValueError(
362
+ "You must specify exactly one of input_ids or inputs_embeds"
363
+ )
364
+ if (
365
+ pixel_values is not None or pixel_values_videos is not None
366
+ ) and inputs_embeds is not None:
367
+ raise ValueError(
368
+ "You cannot specify both (pixel_values or pixel_values_videos) and inputs_embeds at the same time, and must specify either one"
369
+ )
370
+
371
+ if inputs_embeds is None:
372
+ inputs_embeds = self.get_input_embeddings()(input_ids)
373
+
374
+ image_features = None
375
+ if pixel_values is not None:
376
+ image_features = self.get_image_features(
377
+ pixel_values=pixel_values, mask_embeds=mask_embeds
378
+ )
379
+ image_features = image_features.to(
380
+ inputs_embeds.device, dtype=inputs_embeds.dtype
381
+ )
382
+ special_image_mask, _ = self.get_placeholder_mask(
383
+ input_ids, inputs_embeds=inputs_embeds, image_features=image_features
384
+ )
385
+ inputs_embeds = inputs_embeds.masked_scatter(
386
+ special_image_mask, image_features
387
+ )
388
+
389
+ video_features = None
390
+ if pixel_values_videos is not None:
391
+ video_features = self.get_image_features(pixel_values=pixel_values_videos)
392
+ video_features = video_features.to(
393
+ inputs_embeds.device, dtype=inputs_embeds.dtype
394
+ )
395
+ _, special_video_mask = self.get_placeholder_mask(
396
+ input_ids, inputs_embeds=inputs_embeds, video_features=video_features
397
+ )
398
+ inputs_embeds = inputs_embeds.masked_scatter(
399
+ special_video_mask, video_features
400
+ )
401
+
402
+ outputs = self.language_model(
403
+ attention_mask=attention_mask,
404
+ position_ids=position_ids,
405
+ past_key_values=past_key_values,
406
+ inputs_embeds=inputs_embeds,
407
+ use_cache=use_cache,
408
+ output_attentions=output_attentions,
409
+ output_hidden_states=output_hidden_states,
410
+ return_dict=True,
411
+ cache_position=cache_position,
412
+ logits_to_keep=logits_to_keep,
413
+ **lm_kwargs,
414
+ )
415
+ return PerceptionLMModelOutputWithPast(
416
+ last_hidden_state=outputs.last_hidden_state,
417
+ hidden_states=outputs.hidden_states,
418
+ past_key_values=outputs.past_key_values,
419
+ attentions=outputs.attentions,
420
+ image_hidden_states=image_features if pixel_values is not None else None,
421
+ video_hidden_states=(
422
+ video_features if pixel_values_videos is not None else None
423
+ ),
424
+ )
425
+
426
+
427
+ @auto_docstring
428
+ class PerceptionLMForConditionalGeneration(
429
+ PerceptionLMPreTrainedModel, GenerationMixin
430
+ ):
431
+ _checkpoint_conversion_mapping = {}
432
+ _tied_weights_keys = ["lm_head.weight"]
433
+
434
+ def __init__(self, config: PerceptionLMConfig):
435
+ super().__init__(config)
436
+ self.model = PerceptionLMModel(config)
437
+ self.lm_head = nn.Linear(
438
+ config.text_config.hidden_size, config.text_config.vocab_size, bias=False
439
+ )
440
+ self.post_init()
441
+
442
+ def get_input_embeddings(self):
443
+ return self.model.get_input_embeddings()
444
+
445
+ def set_input_embeddings(self, value):
446
+ self.model.set_input_embeddings(value)
447
+
448
+ def get_output_embeddings(self) -> nn.Module:
449
+ return self.lm_head
450
+
451
+ def set_decoder(self, decoder):
452
+ self.model.set_decoder(decoder)
453
+
454
+ def get_decoder(self):
455
+ return self.model.get_decoder()
456
+
457
+ def get_image_features(
458
+ self,
459
+ pixel_values: torch.FloatTensor,
460
+ mask_embeds: Optional[torch.FloatTensor] = None,
461
+ **kwargs,
462
+ ):
463
+ return self.model.get_image_features(
464
+ pixel_values=pixel_values, mask_embeds=mask_embeds, **kwargs
465
+ )
466
+
467
+ def get_placeholder_mask(
468
+ self,
469
+ input_ids: torch.LongTensor,
470
+ inputs_embeds: torch.FloatTensor,
471
+ image_features: torch.FloatTensor = None,
472
+ video_features: torch.FloatTensor = None,
473
+ ):
474
+ return self.model.get_placeholder_mask(
475
+ input_ids=input_ids,
476
+ inputs_embeds=inputs_embeds,
477
+ image_features=image_features,
478
+ video_features=video_features,
479
+ )
480
+
481
+ @can_return_tuple
482
+ @auto_docstring
483
+ def forward(
484
+ self,
485
+ input_ids: Optional[torch.LongTensor] = None, # no need
486
+ pixel_values: Optional[torch.FloatTensor] = None, # no need
487
+ pixel_values_videos: Optional[torch.FloatTensor] = None, # no need
488
+ attention_mask: Optional[torch.Tensor] = None, # need
489
+ position_ids: Optional[torch.LongTensor] = None, # need
490
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
491
+ inputs_embeds: Optional[torch.FloatTensor] = None, # need
492
+ labels: Optional[torch.LongTensor] = None, # need
493
+ use_cache: Optional[bool] = None, # need
494
+ output_attentions: Optional[bool] = None,
495
+ output_hidden_states: Optional[bool] = None,
496
+ cache_position: Optional[torch.LongTensor] = None,
497
+ logits_to_keep: Union[int, torch.Tensor] = 0,
498
+ **lm_kwargs,
499
+ ) -> Union[tuple, PerceptionLMCausalLMOutputWithPast]:
500
+ r"""
501
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
502
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
503
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
504
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
505
+
506
+ Example:
507
+
508
+ ```python
509
+ >>> from PIL import Image
510
+ >>> import requests
511
+ >>> from transformers import AutoProcessor, PerceptionLMForConditionalGeneration
512
+
513
+ >>> model = PerceptionLMForConditionalGeneration.from_pretrained("perception_lm-hf/perception_lm-1.5-7b-hf")
514
+ >>> processor = AutoProcessor.from_pretrained("perception_lm-hf/perception_lm-1.5-7b-hf")
515
+
516
+ >>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
517
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
518
+ >>> image = Image.open(requests.get(url, stream=True).raw)
519
+
520
+ >>> inputs = processor(images=image, text=prompt, return_tensors="pt")
521
+
522
+ >>> # Generate
523
+ >>> generate_ids = model.generate(**inputs, max_new_tokens=15)
524
+ >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
525
+ "USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
526
+ ```"""
527
+ outputs = self.model(
528
+ input_ids=input_ids,
529
+ pixel_values=pixel_values,
530
+ pixel_values_videos=pixel_values_videos,
531
+ attention_mask=attention_mask,
532
+ position_ids=position_ids,
533
+ past_key_values=past_key_values,
534
+ inputs_embeds=inputs_embeds,
535
+ use_cache=use_cache,
536
+ output_attentions=output_attentions,
537
+ output_hidden_states=output_hidden_states,
538
+ cache_position=cache_position,
539
+ logits_to_keep=logits_to_keep,
540
+ **lm_kwargs,
541
+ )
542
+
543
+ hidden_states = outputs[0]
544
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
545
+ slice_indices = (
546
+ slice(-logits_to_keep, None)
547
+ if isinstance(logits_to_keep, int)
548
+ else logits_to_keep
549
+ )
550
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
551
+
552
+ loss = None
553
+
554
+ if labels is not None:
555
+ loss = self.loss_function(
556
+ logits=logits,
557
+ labels=labels,
558
+ vocab_size=self.config.text_config.vocab_size,
559
+ **lm_kwargs,
560
+ )
561
+
562
+ return PerceptionLMCausalLMOutputWithPast(
563
+ loss=loss,
564
+ logits=logits,
565
+ past_key_values=outputs.past_key_values,
566
+ hidden_states=outputs.hidden_states,
567
+ attentions=outputs.attentions,
568
+ image_hidden_states=outputs.image_hidden_states,
569
+ video_hidden_states=outputs.video_hidden_states,
570
+ )
571
+
572
+ def prepare_inputs_for_generation(
573
+ self,
574
+ input_ids,
575
+ past_key_values=None,
576
+ inputs_embeds=None,
577
+ pixel_values=None,
578
+ mask_embeds=None,
579
+ pixel_values_videos=None,
580
+ attention_mask=None,
581
+ cache_position=None,
582
+ logits_to_keep=None,
583
+ feature_replay=None,
584
+ feature_replay_video=None,
585
+ crop_tokens=[128004],
586
+ roi_align=None,
587
+ bboxes=None,
588
+ aspect_ratios=True,
589
+ processor=None,
590
+ **kwargs,
591
+ ):
592
+ # Overwritten -- in specific circumstances we don't want to forward image inputs to the model
593
+
594
+ model_inputs = super().prepare_inputs_for_generation(
595
+ input_ids,
596
+ past_key_values=past_key_values,
597
+ inputs_embeds=inputs_embeds,
598
+ attention_mask=attention_mask,
599
+ cache_position=cache_position,
600
+ logits_to_keep=logits_to_keep,
601
+ **kwargs,
602
+ )
603
+
604
+ assert not (feature_replay and feature_replay_video)
605
+
606
+ if cache_position[0] == 0:
607
+ inputs_embeds = model_inputs["inputs_embeds"]
608
+
609
+ if inputs_embeds is None:
610
+ inputs_embeds = self.get_input_embeddings()(input_ids)
611
+
612
+ image_features = None
613
+ if pixel_values is not None:
614
+ image_features = self.get_image_features(
615
+ pixel_values=pixel_values, mask_embeds=mask_embeds
616
+ )
617
+ image_features = image_features.to(
618
+ inputs_embeds.device, dtype=inputs_embeds.dtype
619
+ )
620
+ special_image_mask, _ = self.get_placeholder_mask(
621
+ input_ids,
622
+ inputs_embeds=inputs_embeds,
623
+ image_features=image_features,
624
+ )
625
+ inputs_embeds = inputs_embeds.masked_scatter(
626
+ special_image_mask, image_features
627
+ )
628
+
629
+ video_features = None
630
+ if pixel_values_videos is not None:
631
+ video_features = self.get_image_features(
632
+ pixel_values=pixel_values_videos
633
+ )
634
+ video_features = video_features.to(
635
+ inputs_embeds.device, dtype=inputs_embeds.dtype
636
+ )
637
+ _, special_video_mask = self.get_placeholder_mask(
638
+ input_ids,
639
+ inputs_embeds=inputs_embeds,
640
+ video_features=video_features,
641
+ )
642
+ inputs_embeds = inputs_embeds.masked_scatter(
643
+ special_video_mask, video_features
644
+ )
645
+
646
+ if feature_replay:
647
+ assert (
648
+ inputs_embeds.shape[0] == 1
649
+ ), "Currently only support batch_size=1 for feature replay"
650
+
651
+ def _merge(tiles: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
652
+ # merge image tiles to the original image
653
+ # input: (batch_size, ncw * nch, num_channels, height//nch, width//ncw)
654
+ # output: (batch_size, num_channels, height, width)
655
+
656
+ batch_size, num_tiles, num_channels, tile_height, tile_width = (
657
+ tiles.size()
658
+ )
659
+ assert num_tiles == ncw * nch, f"{ncw * nch} != {num_tiles}"
660
+
661
+ tiles = tiles.view(
662
+ batch_size, nch, ncw, num_channels, tile_height, tile_width
663
+ )
664
+ tiles = tiles.permute(0, 3, 1, 4, 2, 5).contiguous()
665
+
666
+ original_height = nch * tile_height
667
+ original_width = ncw * tile_width
668
+
669
+ image = tiles.view(
670
+ batch_size, num_channels, original_height, original_width
671
+ )
672
+
673
+ return image
674
+
675
+ new_inputs_embeds = []
676
+ image_features_tiles = rearrange(
677
+ image_features[1:].unsqueeze(0),
678
+ "b n (h w) c -> b n c h w",
679
+ h=16,
680
+ w=16,
681
+ )
682
+ for batch_idx in range(inputs_embeds.shape[0]):
683
+ curr_inputs_emebds = inputs_embeds[batch_idx]
684
+ for crop_token in crop_tokens:
685
+ if crop_token in input_ids[batch_idx]:
686
+ target_mask = input_ids[batch_idx].eq(crop_token)
687
+ target_indices = target_mask.nonzero().squeeze()
688
+ head_idx = target_indices.min().item()
689
+ tail_idx = target_indices.max().item()
690
+ image_features_recover = _merge(
691
+ image_features_tiles,
692
+ aspect_ratios[batch_idx][0],
693
+ aspect_ratios[batch_idx][1],
694
+ )
695
+ x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
696
+ feat_h, feat_w = image_features_recover.shape[2:]
697
+ orig_h, orig_w = feat_h * 28, feat_w * 28 # 原图尺寸
698
+
699
+ # origin box
700
+ roi_orig_x1 = x1 * orig_w
701
+ roi_orig_y1 = y1 * orig_h
702
+ roi_orig_x2 = x2 * orig_w
703
+ roi_orig_y2 = y2 * orig_h
704
+
705
+ # feat box
706
+ spatial_scale = feat_w / orig_w
707
+ roi_feat_x1 = roi_orig_x1 * spatial_scale
708
+ roi_feat_y1 = roi_orig_y1 * spatial_scale
709
+ roi_feat_x2 = roi_orig_x2 * spatial_scale
710
+ roi_feat_y2 = roi_orig_y2 * spatial_scale
711
+
712
+ roi = torch.tensor(
713
+ [0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2],
714
+ dtype=torch.float32,
715
+ device=image_features_recover.device,
716
+ )
717
+
718
+ roi_features = torchvision.ops.roi_align(
719
+ input=image_features_recover.float(),
720
+ boxes=roi.unsqueeze(0),
721
+ output_size=(16, 16),
722
+ spatial_scale=spatial_scale,
723
+ sampling_ratio=2,
724
+ aligned=True,
725
+ )
726
+
727
+ image_features_replay = (
728
+ roi_features.permute(0, 2, 3, 1)
729
+ .flatten(1, 2)
730
+ .to(image_features_recover.dtype)
731
+ .squeeze()
732
+ )
733
+
734
+ curr_inputs_emebds = torch.cat(
735
+ [
736
+ inputs_embeds[batch_idx][:head_idx],
737
+ image_features_replay,
738
+ inputs_embeds[batch_idx][tail_idx + 1 :],
739
+ ]
740
+ )
741
+
742
+ new_inputs_embeds.append(curr_inputs_emebds.unsqueeze(0))
743
+
744
+ inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
745
+ model_inputs["position_ids"] = (
746
+ torch.arange(
747
+ 0,
748
+ inputs_embeds.shape[1],
749
+ dtype=torch.long,
750
+ device=inputs_embeds.device,
751
+ )
752
+ .unsqueeze(0)
753
+ .repeat(inputs_embeds.shape[0], 1)
754
+ )
755
+ model_inputs["attention_mask"] = torch.ones(
756
+ inputs_embeds.shape[0],
757
+ inputs_embeds.shape[1],
758
+ dtype=torch.long,
759
+ device=inputs_embeds.device,
760
+ )
761
+ model_inputs["cache_position"] = model_inputs["position_ids"].clone()
762
+
763
+ elif feature_replay_video:
764
+ assert (
765
+ inputs_embeds.shape[0] == 1
766
+ ), "Currently only support batch_size=1 for feature replay"
767
+ assert processor is not None, "Need processor"
768
+
769
+ new_inputs_embeds = []
770
+ image_features_tiles = rearrange(
771
+ image_features.unsqueeze(0), "b n (h w) c -> b n c h w", h=16, w=16
772
+ )
773
+ for batch_idx in range(inputs_embeds.shape[0]):
774
+ curr_inputs_emebds = inputs_embeds[batch_idx]
775
+ for frame_idx in range(image_features.shape[0]):
776
+ crop_token = processor.tokenizer.convert_tokens_to_ids(
777
+ f"<|reserved_special_token_{2 + frame_idx}|>"
778
+ )
779
+ if crop_token in input_ids[batch_idx]:
780
+ target_mask = input_ids[batch_idx].eq(crop_token)
781
+ target_indices = target_mask.nonzero().squeeze()
782
+ head_idx = target_indices.min().item()
783
+ tail_idx = target_indices.max().item()
784
+ x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
785
+ feat_h, feat_w = 16, 16
786
+ orig_h, orig_w = feat_h * 28, feat_w * 28
787
+
788
+ # origin box
789
+ roi_orig_x1 = x1 * orig_w
790
+ roi_orig_y1 = y1 * orig_h
791
+ roi_orig_x2 = x2 * orig_w
792
+ roi_orig_y2 = y2 * orig_h
793
+
794
+ # feat box
795
+ spatial_scale = feat_w / orig_w
796
+ roi_feat_x1 = roi_orig_x1 * spatial_scale
797
+ roi_feat_y1 = roi_orig_y1 * spatial_scale
798
+ roi_feat_x2 = roi_orig_x2 * spatial_scale
799
+ roi_feat_y2 = roi_orig_y2 * spatial_scale
800
+
801
+ roi = torch.tensor(
802
+ [0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2],
803
+ dtype=torch.float32,
804
+ device=image_features_tiles.device,
805
+ )
806
+
807
+ roi_features = torchvision.ops.roi_align(
808
+ input=image_features_tiles[:, frame_idx].float(),
809
+ boxes=roi.unsqueeze(0),
810
+ output_size=(16, 16),
811
+ spatial_scale=spatial_scale,
812
+ sampling_ratio=2,
813
+ aligned=True,
814
+ )
815
+
816
+ image_features_replay = (
817
+ roi_features.permute(0, 2, 3, 1)
818
+ .flatten(1, 2)
819
+ .to(image_features_tiles.dtype)
820
+ .squeeze()
821
+ )
822
+
823
+ curr_inputs_emebds = torch.cat(
824
+ [
825
+ curr_inputs_emebds[:head_idx],
826
+ image_features_replay,
827
+ curr_inputs_emebds[tail_idx + 1 :],
828
+ ]
829
+ )
830
+
831
+ new_inputs_embeds.append(curr_inputs_emebds.unsqueeze(0))
832
+
833
+ inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
834
+ model_inputs["position_ids"] = (
835
+ torch.arange(
836
+ 0,
837
+ inputs_embeds.shape[1],
838
+ dtype=torch.long,
839
+ device=inputs_embeds.device,
840
+ )
841
+ .unsqueeze(0)
842
+ .repeat(inputs_embeds.shape[0], 1)
843
+ )
844
+ model_inputs["attention_mask"] = torch.ones(
845
+ inputs_embeds.shape[0],
846
+ inputs_embeds.shape[1],
847
+ dtype=torch.long,
848
+ device=inputs_embeds.device,
849
+ )
850
+ model_inputs["cache_position"] = model_inputs["position_ids"].clone()
851
+
852
+ model_inputs["inputs_embeds"] = inputs_embeds
853
+ model_inputs["input_ids"] = None
854
+ model_inputs["pixel_values"] = None
855
+ model_inputs["pixel_values_videos"] = None
856
+ model_inputs["mask_embeds"] = None
857
+
858
+ return model_inputs
859
+
860
+
861
+ __all__ = [
862
+ "PerceptionLMForConditionalGeneration",
863
+ "PerceptionLMPreTrainedModel",
864
+ "PerceptionLMModel",
865
+ ]
preprocessor_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoImageProcessor": "image_processing_perception_lm_fast.PerceptionLMImageProcessorFast",
4
+ "AutoProcessor": "processing_gar.GARPerceptionLMProcessor"
5
+ },
6
+ "crop_size": null,
7
+ "data_format": "channels_first",
8
+ "default_to_square": true,
9
+ "device": null,
10
+ "disable_grouping": null,
11
+ "do_center_crop": false,
12
+ "do_convert_rgb": true,
13
+ "do_normalize": true,
14
+ "do_rescale": true,
15
+ "do_resize": true,
16
+ "image_mean": [
17
+ 0.5,
18
+ 0.5,
19
+ 0.5
20
+ ],
21
+ "image_processor_type": "PerceptionLMImageProcessorFast",
22
+ "image_std": [
23
+ 0.5,
24
+ 0.5,
25
+ 0.5
26
+ ],
27
+ "input_data_format": null,
28
+ "max_frame_tiles": 1,
29
+ "max_num_tiles": 16,
30
+ "processor_class": "GARPerceptionLMProcessor",
31
+ "resample": 3,
32
+ "rescale_factor": 0.00392156862745098,
33
+ "return_tensors": null,
34
+ "size": {
35
+ "height": 448,
36
+ "width": 448
37
+ },
38
+ "tile_size": 448,
39
+ "vision_input_type": "thumb+tile"
40
+ }
processing_gar.py ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ Processor class for PerceptionLM.
16
+ """
17
+
18
+ from typing import Iterable, Union
19
+
20
+ import numpy as np
21
+ from transformers.feature_extraction_utils import BatchFeature
22
+ from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
23
+ from transformers.processing_utils import (
24
+ MultiModalData,
25
+ ProcessingKwargs,
26
+ ProcessorMixin,
27
+ Unpack,
28
+ )
29
+ from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
30
+ from transformers.utils import logging
31
+ from transformers.video_utils import VideoInput
32
+ from transformers.image_utils import PILImageResampling
33
+ from .image_processing_perception_lm_fast import PerceptionLMImageProcessorFast
34
+ from transformers import AutoTokenizer, AutoProcessor, AutoImageProcessor
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+
39
+ class PerceptionLMProcessorKwargs(ProcessingKwargs, total=False):
40
+ _defaults = {
41
+ "text_kwargs": {
42
+ "padding": False,
43
+ "return_mm_token_type_ids": False,
44
+ },
45
+ }
46
+
47
+
48
+ class GARPerceptionLMProcessor(ProcessorMixin):
49
+ r"""
50
+ Constructs a PerceptionLM processor which wraps a PerceptionLM image processor, a PerceptionLM video processor, and a tokenizer into a single processor.
51
+
52
+ [`PerceptionLMProcessor`] offers all the functionalities of [`PerceptionLMImageProcessorFast`], [`PerceptionLMVideoProcessor`], and the tokenizer (e.g. [`LlamaTokenizerFast`]). See the
53
+ [`~PerceptionLMProcessor.__call__`] and [`~PerceptionLMProcessor.decode`] for more information.
54
+
55
+ Args:
56
+ video_processor ([`PerceptionLMVideoProcessor`], *optional*):
57
+ The video processor to process video inputs.
58
+ image_processor ([`PerceptionLMImageProcessorFast`], *optional*):
59
+ The image processor to process image inputs.
60
+ tokenizer ([`LlamaTokenizerFast`] or similar, *optional*):
61
+ The tokenizer to process text inputs.
62
+ patch_size (`int`, *optional*):
63
+ Patch size from the vision tower.
64
+ chat_template (`str`, *optional*):
65
+ A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
66
+ pooling_ratio (`int`, *optional*, defaults to 2):
67
+ Pooling ratio for vision tokens. If not 1, 2D adaptive pooling is applied over projected vision tokens.
68
+ """
69
+
70
+ attributes = ["video_processor", "image_processor", "tokenizer"]
71
+ image_processor_class = "AutoImageProcessor"
72
+ video_processor_class = "AutoVideoProcessor"
73
+ tokenizer_class = "AutoTokenizer"
74
+
75
+ def __init__(
76
+ self,
77
+ video_processor=None,
78
+ image_processor=None,
79
+ tokenizer=None,
80
+ patch_size=None,
81
+ chat_template=None,
82
+ pooling_ratio=2,
83
+ **kwargs,
84
+ ):
85
+ self.patch_size = patch_size
86
+ self.pooling_ratio = pooling_ratio
87
+ self.image_token = tokenizer.image_token
88
+ self.video_token = tokenizer.video_token
89
+ self.image_token_id = tokenizer.image_token_id
90
+ self.video_token_id = tokenizer.video_token_id
91
+ super().__init__(
92
+ video_processor, image_processor, tokenizer, chat_template=chat_template,
93
+ )
94
+
95
+ def __call__(
96
+ self,
97
+ images: ImageInput = None,
98
+ visual_prompts: ImageInput = None,
99
+ text: Union[
100
+ TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]
101
+ ] = None,
102
+ audio=None,
103
+ videos: VideoInput = None,
104
+ **kwargs: Unpack[PerceptionLMProcessorKwargs],
105
+ ) -> BatchFeature:
106
+ """
107
+ Prepares a batch containing one or more sequences of text and/or images and/or videos.
108
+
109
+ If `text` is provided, it is tokenized using the tokenizer.
110
+ If `images` is provided, they are processed using the image processor.
111
+ If `videos` is provided, they are processed using the video processor.
112
+
113
+ Args:
114
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
115
+ The image or batch of images to be processed. Each image can be a PIL image, NumPy array, or PyTorch tensor.
116
+ Both channels-first and channels-last formats are supported.
117
+ text (`str`, `List[str]`, *optional*):
118
+ The sequence or batch of sequences to be tokenized. Each sequence can be a string.
119
+ videos (`Any`, *optional*):
120
+ The video or batch of videos to be processed.
121
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
122
+ If set, will return tensors of a particular framework. Acceptable values are:
123
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
124
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
125
+ - `'np'`: Return NumPy `np.ndarray` objects.
126
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
127
+
128
+ Returns:
129
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
130
+
131
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is provided.
132
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
133
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is provided).
134
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is provided.
135
+ - **pixel_values_videos** -- Video pixel values to be fed to a model. Returned when `videos` is provided.
136
+ """
137
+ if text is None:
138
+ raise ValueError(
139
+ "You have to specify at least `text` input. Optionally, you can also specify `images` or `videos`."
140
+ )
141
+
142
+ output_kwargs = self._merge_kwargs(
143
+ PerceptionLMProcessorKwargs,
144
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
145
+ **kwargs,
146
+ )
147
+ if images is not None:
148
+ image_inputs = self.image_processor(
149
+ images=images, **output_kwargs["images_kwargs"]
150
+ )
151
+ else:
152
+ image_inputs = {}
153
+
154
+ if visual_prompts is not None:
155
+ visual_prompts_inputs = self.image_processor(
156
+ images=visual_prompts, **output_kwargs["images_kwargs"], resample=PILImageResampling.NEAREST
157
+ )
158
+ image_inputs["mask_values"] = visual_prompts_inputs["pixel_values"]
159
+ else:
160
+ image_inputs["mask_values"] = None
161
+
162
+ if videos is not None:
163
+ videos_inputs = self.video_processor(
164
+ videos, **output_kwargs["videos_kwargs"]
165
+ )
166
+ else:
167
+ videos_inputs = {}
168
+
169
+ if isinstance(text, str):
170
+ text = [text]
171
+ elif not isinstance(text, list) and not isinstance(text[0], str):
172
+ raise ValueError(
173
+ "Invalid input text. Please provide a string, or a list of strings"
174
+ )
175
+
176
+ # try to expand inputs in processing if we have the necessary parts
177
+ prompt_strings = []
178
+ pixel_values = iter(image_inputs.get("pixel_values", []))
179
+ pixel_values_videos = iter(videos_inputs.get("pixel_values_videos", []))
180
+ for sample in text:
181
+ # Replace the media token with the expanded media token sequence
182
+ sample = self._expand_media_tokens(
183
+ sample, self.tokenizer.image_token, pixel_values
184
+ )
185
+ sample = self._expand_media_tokens(
186
+ sample, self.tokenizer.video_token, pixel_values_videos
187
+ )
188
+ prompt_strings.append(sample)
189
+
190
+ return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
191
+ return_mm_token_type_ids = output_kwargs["text_kwargs"].pop(
192
+ "return_mm_token_type_ids", False
193
+ )
194
+ text_inputs = self.tokenizer(
195
+ prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None
196
+ )
197
+ self._check_special_mm_tokens(
198
+ prompt_strings, text_inputs, modalities=["image", "video"]
199
+ )
200
+
201
+ if return_mm_token_type_ids:
202
+ array_ids = np.array(text_inputs["input_ids"])
203
+ mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
204
+ mm_token_type_ids[array_ids == self.image_token_id] = 1
205
+ text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
206
+
207
+ return BatchFeature(
208
+ data={**text_inputs, **image_inputs, **videos_inputs},
209
+ tensor_type=return_tensors,
210
+ )
211
+
212
+ def _expand_media_tokens(self, sample, media_token: str, media_iter: Iterable):
213
+ media_count = sample.count(media_token)
214
+ if media_count > 0:
215
+ media_list = [next(media_iter) for _ in range(media_count)]
216
+ sample_splits = sample.split(media_token)
217
+ media_token_list = []
218
+ for media in media_list:
219
+ height, width = get_image_size(to_numpy_array(media))
220
+ num_tiles = media.shape[0]
221
+ num_media_tokens = (
222
+ (height // self.patch_size // self.pooling_ratio)
223
+ * (width // self.patch_size // self.pooling_ratio)
224
+ * num_tiles
225
+ )
226
+ media_token_list.append(num_media_tokens)
227
+ sample = ""
228
+ for i, num_media_tokens in enumerate(media_token_list):
229
+ sample += sample_splits[i]
230
+ sample += media_token * num_media_tokens
231
+ sample += sample_splits[-1]
232
+ return sample
233
+
234
+ def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
235
+ """
236
+ Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
237
+
238
+ Args:
239
+ image_sizes (`list[list[int]]`, *optional*):
240
+ The input sizes formatted as (height, width) per each image.
241
+
242
+ Returns:
243
+ `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
244
+ input modalities, along with other useful data.
245
+ """
246
+
247
+ vision_data = {}
248
+ if image_sizes is not None:
249
+ images_kwargs = PerceptionLMProcessorKwargs._defaults.get(
250
+ "images_kwargs", {}
251
+ )
252
+ images_kwargs.update(kwargs)
253
+ tile_size = (
254
+ images_kwargs.get("tile_size", None) or self.image_processor.tile_size
255
+ )
256
+
257
+ num_image_tokens = []
258
+ num_image_patches = []
259
+ for height, width in image_sizes:
260
+ if self.image_processor.vision_input_type == "thumb+tile":
261
+ aspect_ratio = self.image_processor._fit_image_to_canvas(
262
+ img_width=width, img_height=height, tile_size=tile_size
263
+ )
264
+ if aspect_ratio is None:
265
+ aspect_ratio = self.image_processor._find_closest_aspect_ratio(
266
+ img_width=width, img_height=height, tile_size=tile_size
267
+ )
268
+ num_tiles = (
269
+ aspect_ratio[0] * aspect_ratio[1] + 1
270
+ ) # base image and tiles
271
+ else:
272
+ num_tiles = 1
273
+
274
+ num_image_tokens.append(
275
+ (tile_size // self.patch_size // self.pooling_ratio)
276
+ * (tile_size // self.patch_size // self.pooling_ratio)
277
+ * num_tiles
278
+ )
279
+ num_image_patches.append(num_tiles)
280
+
281
+ vision_data.update(
282
+ {
283
+ "num_image_tokens": num_image_tokens,
284
+ "num_image_patches": num_image_patches,
285
+ }
286
+ )
287
+ return MultiModalData(**vision_data)
288
+
289
+ def batch_decode(self, *args, **kwargs):
290
+ """
291
+ This method forwards all its arguments to PerceptionLMTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
292
+ refer to the docstring of this method for more information.
293
+ """
294
+ return self.tokenizer.batch_decode(*args, **kwargs)
295
+
296
+ def decode(self, *args, **kwargs):
297
+ """
298
+ This method forwards all its arguments to PerceptionLMTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
299
+ the docstring of this method for more information.
300
+ """
301
+ return self.tokenizer.decode(*args, **kwargs)
302
+
303
+ @property
304
+ def model_input_names(self):
305
+ tokenizer_input_names = self.tokenizer.model_input_names
306
+ image_processor_input_names = self.image_processor.model_input_names
307
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
308
+
309
+ AutoProcessor.register("GARPerceptionLMProcessor", GARPerceptionLMProcessor)
310
+ AutoImageProcessor.register(
311
+ "GARPerceptionLMImageProcessorFast",
312
+ slow_image_processor_class=None,
313
+ fast_image_processor_class=PerceptionLMImageProcessorFast
314
+ )
315
+
316
+ __all__ = ["GARPerceptionLMProcessor"]
processor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "patch_size": 14,
3
+ "pooling_ratio": 2,
4
+ "processor_class": "GARPerceptionLMProcessor",
5
+ "auto_map": {
6
+ "AutoImageProcessor": "image_processing_perception_lm_fast.PerceptionLMImageProcessorFast",
7
+ "AutoProcessor": "processing_gar.GARPerceptionLMProcessor"
8
+ }
9
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "image_token": "<|image|>",
17
+ "pad_token": "<|end_of_text|>",
18
+ "video_token": "<|video|>"
19
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5531cfd169b9f439ecb1339ada499771bf9a7391217dfbb51fd3a03a9fa0ce0
3
+ size 17211041
tokenizer_config.json ADDED
@@ -0,0 +1,2118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|image|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|video|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ },
2051
+ "128256": {
2052
+ "content": "<Prompt0>",
2053
+ "lstrip": false,
2054
+ "normalized": false,
2055
+ "rstrip": false,
2056
+ "single_word": false,
2057
+ "special": true
2058
+ },
2059
+ "128257": {
2060
+ "content": "<Prompt1>",
2061
+ "lstrip": false,
2062
+ "normalized": false,
2063
+ "rstrip": false,
2064
+ "single_word": false,
2065
+ "special": true
2066
+ },
2067
+ "128258": {
2068
+ "content": "<Prompt2>",
2069
+ "lstrip": false,
2070
+ "normalized": false,
2071
+ "rstrip": false,
2072
+ "single_word": false,
2073
+ "special": true
2074
+ },
2075
+ "128259": {
2076
+ "content": "<Prompt3>",
2077
+ "lstrip": false,
2078
+ "normalized": false,
2079
+ "rstrip": false,
2080
+ "single_word": false,
2081
+ "special": true
2082
+ },
2083
+ "128260": {
2084
+ "content": "<Prompt4>",
2085
+ "lstrip": false,
2086
+ "normalized": false,
2087
+ "rstrip": false,
2088
+ "single_word": false,
2089
+ "special": true
2090
+ },
2091
+ "128261": {
2092
+ "content": "<NO_Prompt>",
2093
+ "lstrip": false,
2094
+ "normalized": false,
2095
+ "rstrip": false,
2096
+ "single_word": false,
2097
+ "special": true
2098
+ }
2099
+ },
2100
+ "bos_token": "<|begin_of_text|>",
2101
+ "clean_up_tokenization_spaces": true,
2102
+ "eos_token": "<|eot_id|>",
2103
+ "extra_special_tokens": {
2104
+ "image_token": "<|image|>",
2105
+ "pad_token": "<|end_of_text|>",
2106
+ "video_token": "<|video|>"
2107
+ },
2108
+ "image_token": "<|image|>",
2109
+ "model_input_names": [
2110
+ "input_ids",
2111
+ "attention_mask"
2112
+ ],
2113
+ "model_max_length": 11520,
2114
+ "pad_token": "<|end_of_text|>",
2115
+ "processor_class": "GARPerceptionLMProcessor",
2116
+ "tokenizer_class": "PreTrainedTokenizerFast",
2117
+ "video_token": "<|video|>"
2118
+ }
video_preprocessor_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "data_format": "channels_first",
4
+ "default_to_square": true,
5
+ "device": null,
6
+ "do_center_crop": false,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_pad": null,
10
+ "do_rescale": true,
11
+ "do_resize": true,
12
+ "do_sample_frames": null,
13
+ "fps": null,
14
+ "image_mean": [
15
+ 0.5,
16
+ 0.5,
17
+ 0.5
18
+ ],
19
+ "image_std": [
20
+ 0.5,
21
+ 0.5,
22
+ 0.5
23
+ ],
24
+ "input_data_format": null,
25
+ "num_frames": null,
26
+ "processor_class": "GARPerceptionLMProcessor",
27
+ "resample": 3,
28
+ "rescale_factor": 0.00392156862745098,
29
+ "return_metadata": false,
30
+ "size": {
31
+ "height": 448,
32
+ "width": 448
33
+ },
34
+ "size_divisor": null,
35
+ "video_metadata": null,
36
+ "video_processor_type": "PerceptionLMVideoProcessor"
37
+ }