# ************************************************************************* # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo- # difications”). All Bytedance Inc.'s Modifications are Copyright (2025) B- # ytedance Inc.. # ************************************************************************* # Adapted from https://github.com/huggingface/transformers/blob/v4.55.4/src/transformers/models/perception_lm/image_processing_perception_lm_fast.py # Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for PerceptionLM.""" import math from functools import reduce from typing import Optional, Union import numpy as np from transformers.image_processing_utils import BatchFeature from transformers.image_processing_utils_fast import ( BaseImageProcessorFast, DefaultFastImageProcessorKwargs, get_image_size, group_images_by_shape, reorder_images, ) from transformers.image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, PILImageResampling, ) from transformers.processing_utils import Unpack from transformers.utils import ( TensorType, auto_docstring, is_torch_available, is_torchvision_available, ) if is_torch_available(): import torch if is_torchvision_available(): from torchvision.transforms import functional as F class PerceptionLMFastImageProcessorKwargs(DefaultFastImageProcessorKwargs): r""" vision_input_type (`str`, *optional*, defaults to `"thumb+tile"`): Vision processing strategy. `"thumb+tile"` uses both thumbnails and multiple tiles for multi-scale processing, otherwise uses single tile for lower memory usage. tile_size (`int`, *optional*, defaults to `448`): Height and width dimension (in pixels) of each tile used for image processing. max_num_tiles (`int`, *optional*, defaults to `36`): Maximum number of tiles an image can be split into based on its aspect ratio. """ vision_input_type: str = "thumb+tile" tile_size: int = 448 max_num_tiles: int = 36 @auto_docstring class PerceptionLMImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BICUBIC image_mean = IMAGENET_STANDARD_MEAN image_std = IMAGENET_STANDARD_STD do_resize = True do_center_crop = False do_rescale = True do_normalize = True do_convert_rgb = True size = {"width": 448, "height": 448} # for backward compatibility in tests valid_kwargs = PerceptionLMFastImageProcessorKwargs def __init__(self, **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs]) -> None: super().__init__(**kwargs) @auto_docstring def preprocess( self, images, **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs] ) -> BatchFeature: return super().preprocess(images, **kwargs) @staticmethod def _factors(n: int): """Return all factors of a number.""" return set( reduce( list.__add__, ([i, n // i] for i in range(1, int(n**0.5) + 1) if n % i == 0), ) ) def _find_supported_aspect_ratios(self): """ This function computes all the allowed aspect ratios for a fixed number of input chunks. The order of returned items matters for the result of `_fit_image_to_canvas` function. If tie exists in `_fit_image_to_canvas`, the latter in `_find_supported_aspect_ratios` wins. For example, with `num_tiles=5`, it will return: { 0.2: [(1, 5)], 5.0: [(5, 1)], 0.25: [(1, 4)], 1.0: [(2, 2), (1, 1)], 4.0: [(4, 1)], 0.3333333333333333: [(1, 3)], 3.0: [(3, 1)], 0.5: [(1, 2)], 2.0: [(2, 1)] } """ asp_dict = {} for chunk_size in range(self.max_num_tiles, 0, -1): _factors = sorted(self._factors(chunk_size)) _asp_ratios = [(x, chunk_size // x) for x in _factors] for ratio in _asp_ratios: k = ratio[0] / ratio[1] if k not in asp_dict: asp_dict[k] = [ratio] else: asp_dict[k].append(ratio) return asp_dict def _get_image_height_width( self, image_width: int, image_height: int, target_width: int, target_height: int ) -> tuple[int, int]: """ Given image width, height and target width, height for the canvas, return the dimensions of how the image would be resized with aspect ratio preservation. """ scale = image_width / image_height if scale > 1.0: # Width is larger than height # Rescaling factor is the minimum of the two scaling factors. Else one side would be outside of the canvas. rescaling_factor = min( target_width / image_width, target_height / image_height ) # Set new width to target width and height to the rescaled height. new_w = rescaling_factor * image_width new_h = math.floor(new_w / scale) else: # Height is larger than width # Rescaling factor is the minimum of the two scaling factors. Else one side would be outside of the canvas. rescaling_factor = min( target_width / image_width, target_height / image_height ) # Set new height to target height and width to the rescaled width. new_h = rescaling_factor * image_height new_w = math.floor(new_h * scale) return new_w, new_h def _fit_image_to_canvas(self, img_width: int, img_height: int, tile_size: int): """ Given an image width, height and target number of chunks this function will see if the image can be fit into any of the canvases that can be build from arranging the tiles in a grid. If the image can be fit onto several canvases, it will return the canvas where the shorter edge of the image will be largest. """ # Initialize the optimal canvas to None. If no canvas is found where image fits, function returns None. optimal_canvas = None optimal_image_width_height = None scale = img_width / img_height # Gather all potential supported image resolutions and iterate through them to find best match potential_arrangements = [ item for sublist in self._find_supported_aspect_ratios().values() for item in sublist ] for n_w, n_h in potential_arrangements: # Compute the canvas size canvas_width, canvas_height = n_w * tile_size, n_h * tile_size # Check if image can fit into the canvas without downsampling if canvas_width >= img_width and canvas_height >= img_height: # If we did not find a good canvas yet, we will use the current one if optimal_canvas is None: # Set optimal canvas and determine the actual image height and width in the canvas with aspect ratio preserving resampling optimal_canvas = (n_w, n_h) optimal_image_width_height = self._get_image_height_width( image_width=img_width, image_height=img_height, target_width=n_w * tile_size, target_height=n_h * tile_size, ) else: # If we already found an optimal canvas before, we will check if the shorter edge of the image will be larger than the current optimal canvas. # This means we can potentially upsample the image resolution which is beneficial to performance. image_width_height = self._get_image_height_width( image_width=img_width, image_height=img_height, target_width=n_w * tile_size, target_height=n_h * tile_size, ) # Llama3V dynamic tiling. Priortize biggest canvas. if ( scale < 1.0 and (image_width_height[0] >= optimal_image_width_height[0]) ) or ( scale >= 1.0 and (image_width_height[1] >= optimal_image_width_height[1]) ): optimal_canvas = (n_w, n_h) optimal_image_width_height = image_width_height return optimal_canvas def _find_closest_aspect_ratio( self, img_width: int, img_height: int, tile_size: int ) -> tuple: """ Given an image width, height and target number of chunks this function will find the closest supported aspect ratio. """ target_aspect_ratio = img_width / img_height asp_dict = self._find_supported_aspect_ratios() closest_aspect_ratio = None if target_aspect_ratio >= 1: closest_aspect_ratio = min( [k for k in asp_dict if k <= target_aspect_ratio], key=lambda x: abs(x - target_aspect_ratio), ) tiles_given_aspect_ratio = asp_dict[closest_aspect_ratio] # select largest width return max(tiles_given_aspect_ratio, key=lambda x: x[0]) else: closest_aspect_ratio = min( [k for k in asp_dict if k > target_aspect_ratio], key=lambda x: abs(1 / x - 1 / target_aspect_ratio), ) tiles_given_aspect_ratio = asp_dict[closest_aspect_ratio] # select largest height return max(tiles_given_aspect_ratio, key=lambda x: x[1]) def _split(self, image: torch.Tensor, ncw: int, nch: int) -> torch.Tensor: # Split image into number of required tiles (width x height) batch_size, num_channels, height, width = image.size() image = image.view( batch_size, num_channels, nch, height // nch, ncw, width // ncw ) # Permute dimensions to reorder the axes image = image.permute(0, 2, 4, 1, 3, 5).contiguous() # Reshape into the desired output shape (batch_size * 4, num_channels, width/2, height/2) image = image.view( batch_size, ncw * nch, num_channels, height // nch, width // ncw ) return image def resize( self, image: np.ndarray, tile_size: int, max_num_tiles: int, resample: PILImageResampling = PILImageResampling.BICUBIC, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): height, width = get_image_size(image, channel_dim=input_data_format) if max_num_tiles > 1: aspect_ratio = self._fit_image_to_canvas( img_width=width, img_height=height, tile_size=tile_size ) if aspect_ratio is None: # If we did not find a canvas, we have to find the closest aspect ratio and downsample the image aspect_ratio = self._find_closest_aspect_ratio( img_width=width, img_height=height, tile_size=tile_size ) else: aspect_ratio = (1, 1) new_width, new_height = aspect_ratio[0] * tile_size, aspect_ratio[1] * tile_size image = F.resize(image, (new_height, new_width), interpolation=resample) return image, aspect_ratio def _preprocess( self, images: list["torch.Tensor"], do_resize: bool, do_rescale: Optional[bool], rescale_factor: Optional[Union[int, float]], do_normalize: Optional[bool], image_mean: Optional[Union[float, list[float]]], image_std: Optional[Union[float, list[float]]], vision_input_type: str, tile_size: int, max_num_tiles: int, return_tensors: Optional[Union[str, TensorType]], disable_grouping: bool, **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs], ) -> BatchFeature: # Group images by size for batched transformation resample = kwargs.pop("resample", self.resample) grouped_images, grouped_images_index = group_images_by_shape( images, disable_grouping=disable_grouping ) resized_images_grouped = {} aspect_ratio = [1, 1] for shape, stacked_images in grouped_images.items(): if do_resize: if vision_input_type == "thumb+tile": thumbnails, _ = self.resize( stacked_images, tile_size, max_num_tiles=1, resample=resample, ) images_for_tiling, (tiles_w, tiles_h) = self.resize( stacked_images, tile_size, max_num_tiles=max_num_tiles, resample=resample, ) image_tiles = self._split(images_for_tiling, tiles_w, tiles_h) stacked_images = torch.cat( [thumbnails.unsqueeze(1), image_tiles], dim=1 ) aspect_ratio = [tiles_w, tiles_h] else: # vanilla single tile for low memory devices stacked_images, _ = self.resize( stacked_images, tile_size, max_num_tiles=1, resample=resample, ) resized_images_grouped[shape] = stacked_images resized_images = reorder_images(resized_images_grouped, grouped_images_index) grouped_images, grouped_images_index = group_images_by_shape( resized_images, disable_grouping=disable_grouping ) processed_images_grouped = {} for shape, stacked_images in grouped_images.items(): # Fused rescale and normalize stacked_images = self.rescale_and_normalize( stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std, ) processed_images_grouped[shape] = stacked_images processed_images = reorder_images( processed_images_grouped, grouped_images_index ) processed_images = [ p[None] if p.ndim == 3 else p for p in processed_images ] # add tiles dimension if needed processed_images = ( torch.stack(processed_images, dim=0) if return_tensors else processed_images ) return BatchFeature( data={"pixel_values": processed_images, "aspect_ratio": aspect_ratio}, tensor_type=return_tensors, ) __all__ = ["PerceptionLMImageProcessorFast"]