Update README.md
Browse files
README.md
CHANGED
@@ -46,6 +46,252 @@ inference:
|
|
46 |
max_new_tokens: 512
|
47 |
---
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
[Rest of README content here...]
|
|
|
46 |
max_new_tokens: 512
|
47 |
---
|
48 |
|
49 |
+
---
|
50 |
+
|
51 |
+
# Qwen2.5-Coder-7B-Manim
|
52 |
+
|
53 |
+
[](https://huggingface.co/Harish102005/Qwen2.5-Coder-7B-manim)
|
54 |
+
|
55 |
+
[](https://huggingface.co/Qwen/Qwen2.5-Coder-7B)
|
56 |
+
|
57 |
+
**Generate Manim (Mathematical Animation Engine) Python code from natural language descriptions!**
|
58 |
+
Fine-tuned on **2,407 examples** from the 3Blue1Brown Manim dataset using **QLoRA** with Unsloth.
|
59 |
+
|
60 |
+
---
|
61 |
+
|
62 |
+
## 🚀 Quick Start
|
63 |
+
|
64 |
+
### Installation
|
65 |
+
|
66 |
+
```bash
|
67 |
+
pip install unsloth transformers accelerate
|
68 |
+
```
|
69 |
+
|
70 |
+
### Load Model
|
71 |
+
|
72 |
+
```python
|
73 |
+
from unsloth import FastLanguageModel
|
74 |
+
|
75 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
76 |
+
model_name="Harish102005/Qwen2.5-Coder-7B-manim",
|
77 |
+
max_seq_length=2048,
|
78 |
+
dtype=None,
|
79 |
+
load_in_4bit=True,
|
80 |
+
)
|
81 |
+
FastLanguageModel.for_inference(model)
|
82 |
+
```
|
83 |
+
|
84 |
+
### Generate Manim Code
|
85 |
+
|
86 |
+
```python
|
87 |
+
# Alpaca-style prompt template
|
88 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
89 |
+
|
90 |
+
### Instruction:
|
91 |
+
{}
|
92 |
+
|
93 |
+
### Input:
|
94 |
+
{}
|
95 |
+
|
96 |
+
### Response:
|
97 |
+
{}"""
|
98 |
+
|
99 |
+
prompt = "Create a blue circle that grows to twice its size"
|
100 |
+
|
101 |
+
inputs = tokenizer([
|
102 |
+
alpaca_prompt.format(
|
103 |
+
"Generate Manim code for the following task:",
|
104 |
+
prompt,
|
105 |
+
""
|
106 |
+
)
|
107 |
+
], return_tensors="pt").to("cuda")
|
108 |
+
|
109 |
+
outputs = model.generate(
|
110 |
+
**inputs,
|
111 |
+
max_new_tokens=512,
|
112 |
+
temperature=0.3,
|
113 |
+
top_p=0.9,
|
114 |
+
repetition_penalty=1.1,
|
115 |
+
do_sample=True,
|
116 |
+
)
|
117 |
+
|
118 |
+
generated_code = tokenizer.decode(outputs, skip_special_tokens=True)
|
119 |
+
print(generated_code.split("### Response:")[-1].strip())
|
120 |
+
```
|
121 |
+
|
122 |
+
---
|
123 |
+
|
124 |
+
### Helper Function
|
125 |
+
|
126 |
+
```python
|
127 |
+
def generate_manim_code(prompt, max_tokens=512):
|
128 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
129 |
+
|
130 |
+
### Instruction:
|
131 |
+
{}
|
132 |
+
|
133 |
+
### Input:
|
134 |
+
{}
|
135 |
+
|
136 |
+
### Response:
|
137 |
+
{}"""
|
138 |
+
|
139 |
+
formatted_prompt = alpaca_prompt.format(
|
140 |
+
"Generate Manim code for the following task:",
|
141 |
+
prompt,
|
142 |
+
""
|
143 |
+
)
|
144 |
+
|
145 |
+
inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
|
146 |
+
outputs = model.generate(
|
147 |
+
**inputs,
|
148 |
+
max_new_tokens=max_tokens,
|
149 |
+
temperature=0.3,
|
150 |
+
top_p=0.9,
|
151 |
+
repetition_penalty=1.1,
|
152 |
+
do_sample=True,
|
153 |
+
)
|
154 |
+
|
155 |
+
generated_text = tokenizer.decode(outputs, skip_special_tokens=True)
|
156 |
+
if "### Response:" in generated_text:
|
157 |
+
code = generated_text.split("### Response:")[-1].strip()
|
158 |
+
if "### Instruction:" in code:
|
159 |
+
code = code.split("### Instruction:")[0].strip()
|
160 |
+
return code
|
161 |
+
|
162 |
+
return generated_text
|
163 |
+
|
164 |
+
# Example
|
165 |
+
code = generate_manim_code("Create a rotating square")
|
166 |
+
print(code)
|
167 |
+
```
|
168 |
+
|
169 |
+
---
|
170 |
+
|
171 |
+
## 📊 Example Outputs
|
172 |
+
|
173 |
+
### 1. Color-Changing Rotation
|
174 |
+
|
175 |
+
**Prompt:** `"Create a rotating square that changes color from blue to red"`
|
176 |
+
|
177 |
+
```python
|
178 |
+
from manim import *
|
179 |
+
|
180 |
+
class MyScene(Scene):
|
181 |
+
def construct(self):
|
182 |
+
square = Square(color=BLUE)
|
183 |
+
self.add(square)
|
184 |
+
self.play(square.animate.rotate(PI), run_time=2)
|
185 |
+
square.set_color(RED)
|
186 |
+
```
|
187 |
+
|
188 |
+
### 2. Mathematical Function
|
189 |
+
|
190 |
+
**Prompt:** `"Draw a sine wave from 0 to 2π with animation"`
|
191 |
+
|
192 |
+
```python
|
193 |
+
from manim import *
|
194 |
+
|
195 |
+
class MyScene(Scene):
|
196 |
+
def construct(self):
|
197 |
+
axes = Axes(x_range=[0, 2*PI], y_range=[-1, 1])
|
198 |
+
graph = axes.plot(lambda x: np.sin(x), color=BLUE)
|
199 |
+
self.add(axes, graph)
|
200 |
+
```
|
201 |
+
|
202 |
+
### 3. Formula Display
|
203 |
+
|
204 |
+
**Prompt:** `"Show the equation E=mc² and fade it in"`
|
205 |
+
|
206 |
+
```python
|
207 |
+
from manim import *
|
208 |
+
|
209 |
+
class MyScene(Scene):
|
210 |
+
def construct(self):
|
211 |
+
e_mc_squared = MathTex("E=mc^2")
|
212 |
+
self.play(Write(e_mc_squared))
|
213 |
+
self.wait()
|
214 |
+
```
|
215 |
+
|
216 |
+
---
|
217 |
+
|
218 |
+
## 📈 Model Details
|
219 |
+
|
220 |
+
* **Base Model:** [Qwen/Qwen2.5-Coder-7B](https://huggingface.co/Qwen/Qwen2.5-Coder-7B)
|
221 |
+
* **Fine-tuning Method:** QLoRA (4-bit) with [Unsloth](https://github.com/unslothai/unsloth)
|
222 |
+
* **Dataset:** [dalle2/3blue1brown-manim](https://huggingface.co/datasets/dalle2/3blue1brown-manim)
|
223 |
+
* **Dataset Size:** 2,407 prompt-code pairs
|
224 |
+
* **Final Training Loss:** 0.553
|
225 |
+
* **Model Type:** Qwen2ForCausalLM
|
226 |
+
* **Parameters:** ~7.6B (base), Trainable: 40.4M (0.53%)
|
227 |
+
|
228 |
+
### Hyperparameters
|
229 |
+
|
230 |
+
| Parameter | Value |
|
231 |
+
| ------------------- | ------------------------------------------------------------- |
|
232 |
+
| LoRA Rank (r) | 16 |
|
233 |
+
| LoRA Alpha | 16 |
|
234 |
+
| LoRA Dropout | 0.0 |
|
235 |
+
| Target Modules | q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj |
|
236 |
+
| Max Sequence Length | 2048 |
|
237 |
+
| Precision | BFloat16 |
|
238 |
+
| Quantization | 4-bit NF4 (double quantization) |
|
239 |
+
|
240 |
+
---
|
241 |
+
|
242 |
+
## 🎯 Use Cases
|
243 |
+
|
244 |
+
* Generate educational animations (math tutorials, visualizations)
|
245 |
+
* Rapid prototyping of visual content in Manim
|
246 |
+
* Learning Manim syntax and animation techniques
|
247 |
+
* Content automation (batch animation generation)
|
248 |
+
|
249 |
+
---
|
250 |
+
|
251 |
+
## ⚠️ Limitations
|
252 |
+
|
253 |
+
* Primarily for **2D Manim animations**; may struggle with complex 3D scenes
|
254 |
+
* Training data limited to **3Blue1Brown patterns** (2,407 examples)
|
255 |
+
* Minor manual corrections may be needed for complex animations
|
256 |
+
* Advanced Manim features (custom shaders, complex mobjects) not fully supported
|
257 |
+
|
258 |
+
---
|
259 |
+
|
260 |
+
## 🔧 Advanced Usage
|
261 |
+
|
262 |
+
### Streaming Output
|
263 |
+
|
264 |
+
```python
|
265 |
+
from transformers import TextStreamer
|
266 |
+
|
267 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
268 |
+
_ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=512, temperature=0.3)
|
269 |
+
```
|
270 |
+
|
271 |
+
### Batch Generation
|
272 |
+
|
273 |
+
```python
|
274 |
+
prompts = ["Create a blue circle", "Draw a red square", "Show a green triangle"]
|
275 |
+
|
276 |
+
for prompt in prompts:
|
277 |
+
code = generate_manim_code(prompt)
|
278 |
+
print(f"Prompt: {prompt}\n{code}\n{'-'*60}")
|
279 |
+
```
|
280 |
+
|
281 |
+
---
|
282 |
+
|
283 |
+
## 🙏 Acknowledgments
|
284 |
+
|
285 |
+
* **Base Model:** [Qwen Team](https://github.com/QwenLM/Qwen)
|
286 |
+
* **Dataset:** [dalle2](https://huggingface.co/datasets/dalle2)
|
287 |
+
* **Training Framework:** [Unsloth](https://github.com/unslothai/unsloth)
|
288 |
+
* **Inspiration:** [3Blue1Brown](https://www.3blue1brown.com/) and the Manim Community
|
289 |
+
|
290 |
+
---
|
291 |
+
|
292 |
+
---
|
293 |
+
|
294 |
+
✅ **Star this model** if you find it useful!
|
295 |
+
|
296 |
+
---
|
297 |
|
|