Create screenspot_eval.py
Browse files- screenspot_eval.py +277 -0
screenspot_eval.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import re
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
from datasets import load_dataset
|
9 |
+
from PIL.Image import Image
|
10 |
+
from PIL.Image import open as open_img
|
11 |
+
from tqdm import tqdm
|
12 |
+
from transformers import AutoModelForImageTextToText, AutoProcessor
|
13 |
+
from transformers.modeling_utils import PreTrainedModel
|
14 |
+
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
|
15 |
+
from transformers.processing_utils import ProcessorMixin
|
16 |
+
|
17 |
+
INSTRUCTION_LOCALIZATION: str = "Localize an element on the GUI image according to my instructions and output a click position as Click(x, y) with x num pixels from the left edge and y num pixels from the top edge."
|
18 |
+
INSTRUCTION_LOCALIZATION_TOOLCALL: str = "Localize an element on the GUI image according to my instructions and output a click position. You must output a valid JSON format."
|
19 |
+
|
20 |
+
|
21 |
+
def load_screenspot(dataset_id: str, subset: str = "test"):
|
22 |
+
dataset = load_dataset(dataset_id)
|
23 |
+
return dataset[subset]
|
24 |
+
|
25 |
+
|
26 |
+
def l1(dx: float, dy: float) -> float:
|
27 |
+
"""Return L1 length of a vector"""
|
28 |
+
return abs(dx) + abs(dy)
|
29 |
+
|
30 |
+
|
31 |
+
def l2(dx: float, dy: float) -> float:
|
32 |
+
"""Return L2 length of a vector"""
|
33 |
+
return (dx**2 + dy**2) ** 0.5
|
34 |
+
|
35 |
+
|
36 |
+
def point_to_rectangle_dist(x: float, y: float, rectangle: tuple, distance_type="L2"):
|
37 |
+
"""Compute the distance of a predicted point to the closest edge of the bbox. If the point is in the bbox, then return 0."""
|
38 |
+
x1, y1, x2, y2 = rectangle # x1,y1 is top-left, x2,y2 is bottom-right
|
39 |
+
|
40 |
+
# Check if the point is inside the rectangle
|
41 |
+
if x1 <= x <= x2 and y1 <= y <= y2:
|
42 |
+
return 0
|
43 |
+
|
44 |
+
# Calculate the closest point on the rectangle
|
45 |
+
closest_x = max(x1, min(x, x2))
|
46 |
+
closest_y = max(y1, min(y, y2))
|
47 |
+
|
48 |
+
# Calculate the distance
|
49 |
+
dx = x - closest_x
|
50 |
+
dy = y - closest_y
|
51 |
+
if distance_type == "L1":
|
52 |
+
return l1(dx, dy)
|
53 |
+
elif distance_type == "L2":
|
54 |
+
return l2(dx, dy)
|
55 |
+
else:
|
56 |
+
raise ValueError("Invalid distance type. Use 'L1' or 'L2'.")
|
57 |
+
|
58 |
+
|
59 |
+
def is_in_bbox(bbox: tuple, x: float, y: float) -> bool:
|
60 |
+
"""Check if a point is inside a bounding box."""
|
61 |
+
x_top_left, y_top_left, x_bottom_right, y_bottom_right = bbox
|
62 |
+
return x_top_left <= x <= x_bottom_right and y_top_left <= y <= y_bottom_right
|
63 |
+
|
64 |
+
|
65 |
+
def assemble_message(image, instruction, use_tool_call: bool = True):
|
66 |
+
system_message = {
|
67 |
+
"role": "system",
|
68 |
+
"content": '[{"name": "click_action", "description": "Click at specific coordinates on the screen.", "parameters": {"additionalProperties": false, "description": "Click at specific coordinates on the screen.", "properties": {"action": {"const": "click", "default": "click", "title": "Action", "type": "string"}, "x": {"description": "The x coordinate, number of pixels from the left edge.", "title": "X", "type": "integer"}, "y": {"description": "The y coordinate, number of pixels from the top edge.", "title": "Y", "type": "integer"}}, "required": ["action", "x", "y"], "title": "ClickAction", "type": "object"}, "strict": true}]',
|
69 |
+
}
|
70 |
+
|
71 |
+
user_message = {
|
72 |
+
"role": "user",
|
73 |
+
"content": [
|
74 |
+
{
|
75 |
+
"type": "image",
|
76 |
+
"image": image,
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"type": "text",
|
80 |
+
"text": f"{INSTRUCTION_LOCALIZATION_TOOLCALL if use_tool_call else INSTRUCTION_LOCALIZATION}\n{instruction}",
|
81 |
+
},
|
82 |
+
],
|
83 |
+
}
|
84 |
+
|
85 |
+
messages = [system_message, user_message] if use_tool_call else [user_message]
|
86 |
+
return messages
|
87 |
+
|
88 |
+
|
89 |
+
def do_smart_resize(image: Image, image_processor: ProcessorMixin) -> tuple[Image, int, int]:
|
90 |
+
"""Do a QWEN2.5-VL smart resize using parameters of an image-processor"""
|
91 |
+
resized_height, resized_width = smart_resize(
|
92 |
+
image.height,
|
93 |
+
image.width,
|
94 |
+
factor=image_processor.patch_size * image_processor.merge_size,
|
95 |
+
min_pixels=image_processor.min_pixels,
|
96 |
+
max_pixels=image_processor.max_pixels,
|
97 |
+
)
|
98 |
+
return image.resize(size=(resized_width, resized_height), resample=None), resized_height, resized_width
|
99 |
+
|
100 |
+
|
101 |
+
def inference(
|
102 |
+
model: PreTrainedModel, processor: ProcessorMixin, dataset, smart_resize: bool = True, use_toolcall: bool = True
|
103 |
+
):
|
104 |
+
"""Gather raw inference results from the model"""
|
105 |
+
results = []
|
106 |
+
for i, sample in enumerate(tqdm(dataset, "running inference requests")):
|
107 |
+
bbox = sample["bbox"]
|
108 |
+
instruction = sample["instruction"]
|
109 |
+
image = sample["image"] # this seems to be a pnd , maybe jpg artifacts cause the difference?
|
110 |
+
image_shape_raw = (image.height, image.width)
|
111 |
+
message = assemble_message(image=image, instruction=instruction)
|
112 |
+
|
113 |
+
# Preparation for inference
|
114 |
+
if smart_resize:
|
115 |
+
image, resized_height, resized_width = do_smart_resize(
|
116 |
+
image=image, image_processor=processor.image_processor
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
resized_height, resized_width = image_shape_raw
|
120 |
+
text = processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
|
121 |
+
|
122 |
+
# compress to JPEG, which is needed for highest possible performance
|
123 |
+
buffer = BytesIO()
|
124 |
+
image.convert("RGB").save(buffer, format="JPEG", quality=90)
|
125 |
+
image = open_img(buffer)
|
126 |
+
|
127 |
+
inputs = processor(
|
128 |
+
text=[text],
|
129 |
+
images=image,
|
130 |
+
padding=True,
|
131 |
+
return_tensors="pt",
|
132 |
+
)
|
133 |
+
inputs = inputs.to("cuda")
|
134 |
+
|
135 |
+
# Inference: Generation of the output
|
136 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
|
137 |
+
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
138 |
+
output_text = processor.batch_decode(
|
139 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
140 |
+
)
|
141 |
+
# print(output_text)
|
142 |
+
if use_toolcall:
|
143 |
+
try:
|
144 |
+
content = json.loads(output_text[0])
|
145 |
+
prediction_raw = f"Click({content['arguments']['x']}, {content['arguments']['y']})"
|
146 |
+
except Exception as e:
|
147 |
+
print(f"Error parsing tool call, using message content instead if available: {repr(e)}")
|
148 |
+
prediction_raw = output_text[0]
|
149 |
+
else:
|
150 |
+
prediction_raw = output_text[0]
|
151 |
+
|
152 |
+
results.append(
|
153 |
+
{
|
154 |
+
"sample_id": i,
|
155 |
+
"ground_truth": tuple(bbox),
|
156 |
+
"prediction_raw": prediction_raw,
|
157 |
+
"image_shape_raw": image_shape_raw,
|
158 |
+
"img_shape_processed": (resized_height, resized_width),
|
159 |
+
}
|
160 |
+
)
|
161 |
+
return results
|
162 |
+
|
163 |
+
|
164 |
+
def get_sample_result(result: dict):
|
165 |
+
"""Postprocess a inference result and compute metrics for this sample."""
|
166 |
+
raw_height, raw_width = result["image_shape_raw"]
|
167 |
+
height, width = result["img_shape_processed"]
|
168 |
+
has_resized_image = height != raw_height or width != raw_width
|
169 |
+
try:
|
170 |
+
bbox = result["ground_truth"]
|
171 |
+
prediction_raw = result["prediction_raw"]
|
172 |
+
match = re.match(r"Click\((\d+),\s*(\d+)\)", prediction_raw)
|
173 |
+
assert match is not None
|
174 |
+
predicted_x = float(match.group(1)) / width
|
175 |
+
predicted_y = float(match.group(2)) / height
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
sample_metric = {
|
179 |
+
"sample_id": result["sample_id"],
|
180 |
+
"has_correct_format": False,
|
181 |
+
"has_resized_image": has_resized_image,
|
182 |
+
"click_in_box": False,
|
183 |
+
"click_l1_dist_to_bbox": 2, # Longest possible L1 distance in the unit square
|
184 |
+
"click_l2_dist_to_bbox": math.sqrt(2), # Longest possible L2 distance in the unit square
|
185 |
+
}
|
186 |
+
|
187 |
+
sample_metric = {
|
188 |
+
"sample_id": result["sample_id"],
|
189 |
+
"has_correct_format": True,
|
190 |
+
"has_resized_image": has_resized_image,
|
191 |
+
"click_in_box": True if is_in_bbox(bbox, x=predicted_x, y=predicted_y) else False,
|
192 |
+
"click_l1_dist_to_bbox": point_to_rectangle_dist(
|
193 |
+
predicted_x, predicted_y, bbox, "L1"
|
194 |
+
), # Longest possible L1 distance in the unit square
|
195 |
+
"click_l2_dist_to_bbox": point_to_rectangle_dist(
|
196 |
+
predicted_x, predicted_y, bbox, "L2"
|
197 |
+
), # Longest possible L2 distance in the unit square
|
198 |
+
}
|
199 |
+
return sample_metric
|
200 |
+
|
201 |
+
|
202 |
+
def aggregate_metrics(sample_metrics):
|
203 |
+
"""Aggregate per-sample metrics into metrics for the entire dataset."""
|
204 |
+
aggregated_metrics = {}
|
205 |
+
aggregated_metrics["click_accuracy"] = np.mean([r["click_in_box"] for r in sample_metrics])
|
206 |
+
|
207 |
+
for threshold in [0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]:
|
208 |
+
aggregated_metrics[f"click_accuracy_p{threshold}"] = np.mean(
|
209 |
+
[r["click_l2_dist_to_bbox"] < threshold for r in sample_metrics]
|
210 |
+
)
|
211 |
+
|
212 |
+
aggregated_metrics["avg_click_l1_dist_to_bbox"] = np.mean([r["click_l1_dist_to_bbox"] for r in sample_metrics])
|
213 |
+
aggregated_metrics["avg_click_l2_dist_to_bbox"] = np.mean([r["click_l2_dist_to_bbox"] for r in sample_metrics])
|
214 |
+
aggregated_metrics["format_accuracy"] = np.mean([r["has_correct_format"] for r in sample_metrics])
|
215 |
+
aggregated_metrics["has_resized_image"] = np.mean([r["has_resized_image"] for r in sample_metrics])
|
216 |
+
return aggregated_metrics
|
217 |
+
|
218 |
+
|
219 |
+
def evaluate_results(results: list[dict]):
|
220 |
+
"""Do evaluate based on the raw model outputs."""
|
221 |
+
per_sample_metrics = []
|
222 |
+
for result in results:
|
223 |
+
metric_dict = get_sample_result(result)
|
224 |
+
per_sample_metrics.append(metric_dict)
|
225 |
+
aggregated = aggregate_metrics(per_sample_metrics)
|
226 |
+
return aggregated
|
227 |
+
|
228 |
+
|
229 |
+
def main(
|
230 |
+
model_id: str = "Hcompany/Holo1-3B",
|
231 |
+
dataset_id: str = "rootsautomation/ScreenSpot",
|
232 |
+
outfile: str = "results.json",
|
233 |
+
use_toolcall: bool = True,
|
234 |
+
):
|
235 |
+
model = AutoModelForImageTextToText.from_pretrained(model_id)
|
236 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
237 |
+
dataset = load_screenspot(dataset_id)
|
238 |
+
results = inference(model.cuda(), processor, dataset, use_toolcall=use_toolcall)
|
239 |
+
metrics = evaluate_results(results)
|
240 |
+
with open(outfile, "w") as fp:
|
241 |
+
json.dump(metrics, fp)
|
242 |
+
for metric, value in metrics.items():
|
243 |
+
print(f"{metric}:\t{value}")
|
244 |
+
|
245 |
+
|
246 |
+
if __name__ == "__main__":
|
247 |
+
parser = argparse.ArgumentParser(description="Run the main function with model and dataset IDs.")
|
248 |
+
|
249 |
+
parser.add_argument(
|
250 |
+
"--model_id",
|
251 |
+
type=str,
|
252 |
+
default="Hcompany/Holo1-3B",
|
253 |
+
help="The identifier for the model to use (default: Hcompany/Holo1-3B)",
|
254 |
+
)
|
255 |
+
|
256 |
+
parser.add_argument(
|
257 |
+
"--dataset_id",
|
258 |
+
type=str,
|
259 |
+
default="rootsautomation/ScreenSpot",
|
260 |
+
help="The identifier for the dataset to use (default: rootsautomation/ScreenSpot)",
|
261 |
+
)
|
262 |
+
|
263 |
+
parser.add_argument(
|
264 |
+
"--outfile",
|
265 |
+
type=str,
|
266 |
+
default="result.json",
|
267 |
+
help="Output json-file containing the aggregated metrics.",
|
268 |
+
)
|
269 |
+
|
270 |
+
parser.add_argument(
|
271 |
+
"--use_toolcall",
|
272 |
+
type=bool,
|
273 |
+
default=True,
|
274 |
+
help="Enable or disable tool call prompting",
|
275 |
+
)
|
276 |
+
args = parser.parse_args()
|
277 |
+
main(model_id=args.model_id, dataset_id=args.dataset_id, outfile=args.outfile, use_toolcall=args.use_toolcall)
|