plcedoz38 commited on
Commit
6d27086
·
verified ·
1 Parent(s): 24abde5

Create screenspot_eval.py

Browse files
Files changed (1) hide show
  1. screenspot_eval.py +277 -0
screenspot_eval.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import math
4
+ import re
5
+ from io import BytesIO
6
+
7
+ import numpy as np
8
+ from datasets import load_dataset
9
+ from PIL.Image import Image
10
+ from PIL.Image import open as open_img
11
+ from tqdm import tqdm
12
+ from transformers import AutoModelForImageTextToText, AutoProcessor
13
+ from transformers.modeling_utils import PreTrainedModel
14
+ from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
15
+ from transformers.processing_utils import ProcessorMixin
16
+
17
+ INSTRUCTION_LOCALIZATION: str = "Localize an element on the GUI image according to my instructions and output a click position as Click(x, y) with x num pixels from the left edge and y num pixels from the top edge."
18
+ INSTRUCTION_LOCALIZATION_TOOLCALL: str = "Localize an element on the GUI image according to my instructions and output a click position. You must output a valid JSON format."
19
+
20
+
21
+ def load_screenspot(dataset_id: str, subset: str = "test"):
22
+ dataset = load_dataset(dataset_id)
23
+ return dataset[subset]
24
+
25
+
26
+ def l1(dx: float, dy: float) -> float:
27
+ """Return L1 length of a vector"""
28
+ return abs(dx) + abs(dy)
29
+
30
+
31
+ def l2(dx: float, dy: float) -> float:
32
+ """Return L2 length of a vector"""
33
+ return (dx**2 + dy**2) ** 0.5
34
+
35
+
36
+ def point_to_rectangle_dist(x: float, y: float, rectangle: tuple, distance_type="L2"):
37
+ """Compute the distance of a predicted point to the closest edge of the bbox. If the point is in the bbox, then return 0."""
38
+ x1, y1, x2, y2 = rectangle # x1,y1 is top-left, x2,y2 is bottom-right
39
+
40
+ # Check if the point is inside the rectangle
41
+ if x1 <= x <= x2 and y1 <= y <= y2:
42
+ return 0
43
+
44
+ # Calculate the closest point on the rectangle
45
+ closest_x = max(x1, min(x, x2))
46
+ closest_y = max(y1, min(y, y2))
47
+
48
+ # Calculate the distance
49
+ dx = x - closest_x
50
+ dy = y - closest_y
51
+ if distance_type == "L1":
52
+ return l1(dx, dy)
53
+ elif distance_type == "L2":
54
+ return l2(dx, dy)
55
+ else:
56
+ raise ValueError("Invalid distance type. Use 'L1' or 'L2'.")
57
+
58
+
59
+ def is_in_bbox(bbox: tuple, x: float, y: float) -> bool:
60
+ """Check if a point is inside a bounding box."""
61
+ x_top_left, y_top_left, x_bottom_right, y_bottom_right = bbox
62
+ return x_top_left <= x <= x_bottom_right and y_top_left <= y <= y_bottom_right
63
+
64
+
65
+ def assemble_message(image, instruction, use_tool_call: bool = True):
66
+ system_message = {
67
+ "role": "system",
68
+ "content": '[{"name": "click_action", "description": "Click at specific coordinates on the screen.", "parameters": {"additionalProperties": false, "description": "Click at specific coordinates on the screen.", "properties": {"action": {"const": "click", "default": "click", "title": "Action", "type": "string"}, "x": {"description": "The x coordinate, number of pixels from the left edge.", "title": "X", "type": "integer"}, "y": {"description": "The y coordinate, number of pixels from the top edge.", "title": "Y", "type": "integer"}}, "required": ["action", "x", "y"], "title": "ClickAction", "type": "object"}, "strict": true}]',
69
+ }
70
+
71
+ user_message = {
72
+ "role": "user",
73
+ "content": [
74
+ {
75
+ "type": "image",
76
+ "image": image,
77
+ },
78
+ {
79
+ "type": "text",
80
+ "text": f"{INSTRUCTION_LOCALIZATION_TOOLCALL if use_tool_call else INSTRUCTION_LOCALIZATION}\n{instruction}",
81
+ },
82
+ ],
83
+ }
84
+
85
+ messages = [system_message, user_message] if use_tool_call else [user_message]
86
+ return messages
87
+
88
+
89
+ def do_smart_resize(image: Image, image_processor: ProcessorMixin) -> tuple[Image, int, int]:
90
+ """Do a QWEN2.5-VL smart resize using parameters of an image-processor"""
91
+ resized_height, resized_width = smart_resize(
92
+ image.height,
93
+ image.width,
94
+ factor=image_processor.patch_size * image_processor.merge_size,
95
+ min_pixels=image_processor.min_pixels,
96
+ max_pixels=image_processor.max_pixels,
97
+ )
98
+ return image.resize(size=(resized_width, resized_height), resample=None), resized_height, resized_width
99
+
100
+
101
+ def inference(
102
+ model: PreTrainedModel, processor: ProcessorMixin, dataset, smart_resize: bool = True, use_toolcall: bool = True
103
+ ):
104
+ """Gather raw inference results from the model"""
105
+ results = []
106
+ for i, sample in enumerate(tqdm(dataset, "running inference requests")):
107
+ bbox = sample["bbox"]
108
+ instruction = sample["instruction"]
109
+ image = sample["image"] # this seems to be a pnd , maybe jpg artifacts cause the difference?
110
+ image_shape_raw = (image.height, image.width)
111
+ message = assemble_message(image=image, instruction=instruction)
112
+
113
+ # Preparation for inference
114
+ if smart_resize:
115
+ image, resized_height, resized_width = do_smart_resize(
116
+ image=image, image_processor=processor.image_processor
117
+ )
118
+ else:
119
+ resized_height, resized_width = image_shape_raw
120
+ text = processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
121
+
122
+ # compress to JPEG, which is needed for highest possible performance
123
+ buffer = BytesIO()
124
+ image.convert("RGB").save(buffer, format="JPEG", quality=90)
125
+ image = open_img(buffer)
126
+
127
+ inputs = processor(
128
+ text=[text],
129
+ images=image,
130
+ padding=True,
131
+ return_tensors="pt",
132
+ )
133
+ inputs = inputs.to("cuda")
134
+
135
+ # Inference: Generation of the output
136
+ generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
137
+ generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
138
+ output_text = processor.batch_decode(
139
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
140
+ )
141
+ # print(output_text)
142
+ if use_toolcall:
143
+ try:
144
+ content = json.loads(output_text[0])
145
+ prediction_raw = f"Click({content['arguments']['x']}, {content['arguments']['y']})"
146
+ except Exception as e:
147
+ print(f"Error parsing tool call, using message content instead if available: {repr(e)}")
148
+ prediction_raw = output_text[0]
149
+ else:
150
+ prediction_raw = output_text[0]
151
+
152
+ results.append(
153
+ {
154
+ "sample_id": i,
155
+ "ground_truth": tuple(bbox),
156
+ "prediction_raw": prediction_raw,
157
+ "image_shape_raw": image_shape_raw,
158
+ "img_shape_processed": (resized_height, resized_width),
159
+ }
160
+ )
161
+ return results
162
+
163
+
164
+ def get_sample_result(result: dict):
165
+ """Postprocess a inference result and compute metrics for this sample."""
166
+ raw_height, raw_width = result["image_shape_raw"]
167
+ height, width = result["img_shape_processed"]
168
+ has_resized_image = height != raw_height or width != raw_width
169
+ try:
170
+ bbox = result["ground_truth"]
171
+ prediction_raw = result["prediction_raw"]
172
+ match = re.match(r"Click\((\d+),\s*(\d+)\)", prediction_raw)
173
+ assert match is not None
174
+ predicted_x = float(match.group(1)) / width
175
+ predicted_y = float(match.group(2)) / height
176
+
177
+ except Exception as e:
178
+ sample_metric = {
179
+ "sample_id": result["sample_id"],
180
+ "has_correct_format": False,
181
+ "has_resized_image": has_resized_image,
182
+ "click_in_box": False,
183
+ "click_l1_dist_to_bbox": 2, # Longest possible L1 distance in the unit square
184
+ "click_l2_dist_to_bbox": math.sqrt(2), # Longest possible L2 distance in the unit square
185
+ }
186
+
187
+ sample_metric = {
188
+ "sample_id": result["sample_id"],
189
+ "has_correct_format": True,
190
+ "has_resized_image": has_resized_image,
191
+ "click_in_box": True if is_in_bbox(bbox, x=predicted_x, y=predicted_y) else False,
192
+ "click_l1_dist_to_bbox": point_to_rectangle_dist(
193
+ predicted_x, predicted_y, bbox, "L1"
194
+ ), # Longest possible L1 distance in the unit square
195
+ "click_l2_dist_to_bbox": point_to_rectangle_dist(
196
+ predicted_x, predicted_y, bbox, "L2"
197
+ ), # Longest possible L2 distance in the unit square
198
+ }
199
+ return sample_metric
200
+
201
+
202
+ def aggregate_metrics(sample_metrics):
203
+ """Aggregate per-sample metrics into metrics for the entire dataset."""
204
+ aggregated_metrics = {}
205
+ aggregated_metrics["click_accuracy"] = np.mean([r["click_in_box"] for r in sample_metrics])
206
+
207
+ for threshold in [0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]:
208
+ aggregated_metrics[f"click_accuracy_p{threshold}"] = np.mean(
209
+ [r["click_l2_dist_to_bbox"] < threshold for r in sample_metrics]
210
+ )
211
+
212
+ aggregated_metrics["avg_click_l1_dist_to_bbox"] = np.mean([r["click_l1_dist_to_bbox"] for r in sample_metrics])
213
+ aggregated_metrics["avg_click_l2_dist_to_bbox"] = np.mean([r["click_l2_dist_to_bbox"] for r in sample_metrics])
214
+ aggregated_metrics["format_accuracy"] = np.mean([r["has_correct_format"] for r in sample_metrics])
215
+ aggregated_metrics["has_resized_image"] = np.mean([r["has_resized_image"] for r in sample_metrics])
216
+ return aggregated_metrics
217
+
218
+
219
+ def evaluate_results(results: list[dict]):
220
+ """Do evaluate based on the raw model outputs."""
221
+ per_sample_metrics = []
222
+ for result in results:
223
+ metric_dict = get_sample_result(result)
224
+ per_sample_metrics.append(metric_dict)
225
+ aggregated = aggregate_metrics(per_sample_metrics)
226
+ return aggregated
227
+
228
+
229
+ def main(
230
+ model_id: str = "Hcompany/Holo1-3B",
231
+ dataset_id: str = "rootsautomation/ScreenSpot",
232
+ outfile: str = "results.json",
233
+ use_toolcall: bool = True,
234
+ ):
235
+ model = AutoModelForImageTextToText.from_pretrained(model_id)
236
+ processor = AutoProcessor.from_pretrained(model_id)
237
+ dataset = load_screenspot(dataset_id)
238
+ results = inference(model.cuda(), processor, dataset, use_toolcall=use_toolcall)
239
+ metrics = evaluate_results(results)
240
+ with open(outfile, "w") as fp:
241
+ json.dump(metrics, fp)
242
+ for metric, value in metrics.items():
243
+ print(f"{metric}:\t{value}")
244
+
245
+
246
+ if __name__ == "__main__":
247
+ parser = argparse.ArgumentParser(description="Run the main function with model and dataset IDs.")
248
+
249
+ parser.add_argument(
250
+ "--model_id",
251
+ type=str,
252
+ default="Hcompany/Holo1-3B",
253
+ help="The identifier for the model to use (default: Hcompany/Holo1-3B)",
254
+ )
255
+
256
+ parser.add_argument(
257
+ "--dataset_id",
258
+ type=str,
259
+ default="rootsautomation/ScreenSpot",
260
+ help="The identifier for the dataset to use (default: rootsautomation/ScreenSpot)",
261
+ )
262
+
263
+ parser.add_argument(
264
+ "--outfile",
265
+ type=str,
266
+ default="result.json",
267
+ help="Output json-file containing the aggregated metrics.",
268
+ )
269
+
270
+ parser.add_argument(
271
+ "--use_toolcall",
272
+ type=bool,
273
+ default=True,
274
+ help="Enable or disable tool call prompting",
275
+ )
276
+ args = parser.parse_args()
277
+ main(model_id=args.model_id, dataset_id=args.dataset_id, outfile=args.outfile, use_toolcall=args.use_toolcall)