File size: 13,644 Bytes
032c113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import torch
from torch import nn
from tqdm import tqdm
import prettytable
import time
import os
import multiprocessing.pool as mpp
import multiprocessing as mp

from train import *

import argparse
from utils.config import Config
from tools.mask_convert import mask_save
import numpy as np  # [PR] for histogram-based PR accumulation
import csv

# =========================== [PR] Utilities BEGIN ===========================
class PRHistogram:
    # Memory-friendly PR accumulator. Call update(probs, mask) repeatedly inside
    # your test loop, then call export_csv(path) after the loop.
    # - probs: torch.Tensor in [0,1], shape [B,H,W], "change" probability
    # - mask: torch.Tensor of 0/1 (or 0/255), shape [B,H,W]
    def __init__(self, nbins: int = 1000):
        import numpy as _np
        self.nbins = int(nbins)
        self.pos_hist = _np.zeros(self.nbins, dtype=_np.int64)
        self.neg_hist = _np.zeros(self.nbins, dtype=_np.int64)
        self.bin_edges = _np.linspace(0.0, 1.0, self.nbins + 1)

    def update(self, probs, mask):
        import numpy as _np
        p = probs.detach().float().cpu().numpy().ravel()
        g = (mask.detach().cpu().numpy().ravel() > 0).astype(_np.uint8)
        pos_counts, _ = _np.histogram(p[g == 1], bins=self.bin_edges)
        neg_counts, _ = _np.histogram(p[g == 0], bins=self.bin_edges)
        self.pos_hist += pos_counts
        self.neg_hist += neg_counts

    def compute_curve(self):
        import numpy as _np
        # 累加得到从高阈值到低阈值的 TP/FP
        pos_cum = _np.cumsum(self.pos_hist[::-1])
        neg_cum = _np.cumsum(self.neg_hist[::-1])
        TP = pos_cum
        FP = neg_cum
        FN = self.pos_hist.sum() - TP
        TN = None  # 曲线里用不到 TN

        denom_prec = _np.maximum(TP + FP, 1)
        denom_rec  = _np.maximum(TP + FN, 1)
        precision  = TP / denom_prec
        recall     = TP / denom_rec

        # F1 = 2PR/(P+R)
        denom_f1 = _np.maximum(precision + recall, 1e-12)
        f1 = 2.0 * precision * recall / denom_f1

        # IoU = TP / (TP + FP + FN)
        denom_iou = _np.maximum(TP + FP + FN, 1)
        iou = TP / denom_iou

        thresholds = self.bin_edges[::-1][1:]  # 与上述累积方向一致的阈值序列
        return thresholds, precision, recall, f1, iou, TP, FP, FN

    def export_csv(self, save_path: str):
        thresholds, precision, recall, f1, iou, TP, FP, FN = self.compute_curve()
        import numpy as _np, os as _os
        _os.makedirs(_os.path.dirname(save_path), exist_ok=True)
        _np.savetxt(
            save_path,
            _np.column_stack([thresholds, precision, recall, f1, iou, TP, FP, FN]),
            delimiter=",",
            header="threshold,precision,recall,f1,iou,TP,FP,FN",
            comments=""
        )
        return save_path

# Global PR object (create when needed)
_PR = None

def pr_init(nbins: int = 1000):
    global _PR
    if _PR is None:
        _PR = PRHistogram(nbins=nbins)
    return _PR

def pr_update_from_outputs(raw_predictions, mask, cfg):
    # Try to derive probs ∈ [0,1] from various model outputs in this repo.
    # This covers:
    #   - cfg.argmax=True: 2-channel logits -> softmax class-1 prob
    #   - single-channel logits -> sigmoid
    #   - net == 'maskcd' (list/tuple outputs)
    # Modify here if your network has a special head.
    import torch
    global _PR
    if _PR is None:
        _PR = PRHistogram(nbins=1000)

    if getattr(cfg, 'argmax', False):
        logits = raw_predictions
        if logits.dim() == 4 and logits.size(1) >= 2:
            probs = torch.softmax(logits, dim=1)[:, 1, :, :]
        else:
            probs = torch.sigmoid(logits.squeeze(1))
    else:
        if getattr(cfg, 'net', '') == 'maskcd':
            if isinstance(raw_predictions, (list, tuple)):
                logits = raw_predictions[0]
            else:
                logits = raw_predictions
            probs = torch.sigmoid(logits).squeeze(1)
        else:
            logits = raw_predictions
            if logits.dim() == 4 and logits.size(1) == 1:
                logits = logits.squeeze(1)
            probs = torch.sigmoid(logits)

    if mask.dim() == 4 and mask.size(1) == 1:
        mask_ = mask.squeeze(1)
    else:
        mask_ = mask
    _PR.update(probs, (mask_ > 0).to(probs.dtype))

def pr_export(base_dir: str, cfg):
    # Export PR CSV to base_dir/pr_<net>.csv
    import os
    global _PR
    if _PR is None:
        return None
    save_path = os.path.join(base_dir, f"pr_{getattr(cfg,'net','model')}.csv")
    out = _PR.export_csv(save_path)
    print(f"[PR] saved: {out}")
    return out
# ============================ [PR] Utilities END ============================

# -------------------- [Per-Image] 逐图指标工具 --------------------
def _safe_div(a, b, eps=1e-12):
    return a / max(b, eps)

def per_image_stats(pred_np: np.ndarray, gt_np: np.ndarray):
    """
    pred_np, gt_np: 0/1 二值 numpy 数组, shape [H,W]
    返回: dict 包含 TP/FP/TN/FN 与各类指标
    """
    pred_bin = (pred_np > 0).astype(np.uint8)
    gt_bin   = (gt_np  > 0).astype(np.uint8)

    TP = int(((pred_bin == 1) & (gt_bin == 1)).sum())
    FP = int(((pred_bin == 1) & (gt_bin == 0)).sum())
    TN = int(((pred_bin == 0) & (gt_bin == 0)).sum())
    FN = int(((pred_bin == 0) & (gt_bin == 1)).sum())

    precision = _safe_div(TP, (TP + FP))
    recall    = _safe_div(TP, (TP + FN))
    f1        = _safe_div(2 * precision * recall, (precision + recall))
    iou       = _safe_div(TP, (TP + FP + FN))
    oa        = _safe_div(TP + TN, (TP + TN + FP + FN))

    return {
        "TP": TP, "FP": FP, "TN": TN, "FN": FN,
        "OA": oa, "Precision": precision, "Recall": recall, "F1": f1, "IoU": iou
    }
# --------------------------------------------------------------------

def get_args():
    parser = argparse.ArgumentParser('description=Change detection of remote sensing images')
    parser.add_argument("-c", "--config", type=str, default="configs/cdlama.py")
    parser.add_argument("--ckpt", type=str, default=None)
    parser.add_argument("--output_dir", type=str, default=None)
    # 新增:仅生成表格模式(不导出可视化图片)
    parser.add_argument("--tables-only", action="store_true",
                        help="仅生成表格与CSV(总体表、逐图CSV、逐图TXT、小计PR曲线CSV),不生成mask可视化图片")
    return parser.parse_args()

if __name__ == "__main__":
    args = get_args()
    cfg = Config.fromfile(args.config)

    ckpt = args.ckpt
    if ckpt is None:
        ckpt = cfg.test_ckpt_path
    assert ckpt is not None

    if args.output_dir:
        base_dir = args.output_dir
    else:
        base_dir = os.path.dirname(ckpt)

    # 原图像输出目录(仅在需要写图时使用)
    masks_output_dir = os.path.join(base_dir, "mask_rgb")
    # 表格输出目录(逐图表格 .txt),如果 tables-only 则单独放在 tables_only 下
    tables_output_dir = os.path.join(base_dir, "tables_only" if args.tables_only else "mask_rgb")
    os.makedirs(tables_output_dir, exist_ok=True)

    model = myTrain.load_from_checkpoint(ckpt, map_location={'cuda:1':'cuda:0'}, cfg = cfg)
    model = model.to('cuda')
    model.eval()

    metric_cfg_1 = cfg.metric_cfg1
    metric_cfg_2 = cfg.metric_cfg2

    test_oa=torchmetrics.Accuracy(**metric_cfg_1).to('cuda')
    test_prec = torchmetrics.Precision(**metric_cfg_2).to('cuda')
    test_recall = torchmetrics.Recall(**metric_cfg_2).to('cuda')
    test_f1 = torchmetrics.F1Score(**metric_cfg_2).to('cuda')
    test_iou=torchmetrics.JaccardIndex(**metric_cfg_2).to('cuda')

    results = []          # 仅在生成图片时使用
    per_image_rows = []   # [Per-Image] 收集逐图指标

    with torch.no_grad():
        test_loader = build_dataloader(cfg.dataset_config, mode='test')
        # === 调用1: 初始化 ===
        pr_init(nbins=1000)

        for input in tqdm(test_loader):
            raw_predictions, mask, img_id = model(input[0].cuda(), input[1].cuda()), input[2].cuda(), input[3]
            # === 调用2: 更新 ===
            pr_update_from_outputs(raw_predictions, mask, cfg)

            if cfg.net == 'SARASNet':
                mask = Variable(resize_label(mask.data.cpu().numpy(), \
                                        size=raw_predictions.data.cpu().numpy().shape[2:]).to('cuda')).long()
                param = 1  # This parameter is balance precision and recall to get higher F1-score
                raw_predictions[:,1,:,:] = raw_predictions[:,1,:,:] + param

            if cfg.argmax:
                pred = raw_predictions.argmax(dim=1)
            else:
                if cfg.net == 'maskcd':
                    pred = raw_predictions[0]
                    pred = pred > 0.5
                    pred.squeeze_(1)
                else:
                    pred = raw_predictions.squeeze(1)
                    pred = pred > 0.5

            # ====== 累计整体验证指标 ======
            test_oa(pred, mask)
            test_iou(pred, mask)
            test_prec(pred, mask)
            test_f1(pred, mask)
            test_recall(pred, mask)

            # ====== [Per-Image] 逐图指标计算与收集 ======
            for i in range(raw_predictions.shape[0]):
                mask_real = mask[i].detach().cpu().numpy()
                mask_pred = pred[i].detach().cpu().numpy()
                mask_name = str(img_id[i])

                # 逐图统计
                stats = per_image_stats(mask_pred, mask_real)
                per_image_rows.append({
                    "img_id": mask_name,
                    "TP": stats["TP"], "FP": stats["FP"], "TN": stats["TN"], "FN": stats["FN"],
                    "OA": stats["OA"], "Precision": stats["Precision"],
                    "Recall": stats["Recall"], "F1": stats["F1"], "IoU": stats["IoU"]
                })

                # 仅在需要生成可视化图片时才收集写图任务
                if not args.tables_only:
                    results.append((mask_real, mask_pred, masks_output_dir, mask_name))

    # ====== 打印总体指标 ======
    metrics = [test_prec.compute(),
               test_recall.compute(),
               test_f1.compute(),
               test_iou.compute()]

    total_metrics = [test_oa.compute().cpu().numpy(),
                     np.mean([item.cpu() for item in metrics[0]]),
                     np.mean([item.cpu() for item in metrics[1]]),
                     np.mean([item.cpu() for item in metrics[2]]),
                     np.mean([item.cpu() for item in metrics[3]])]

    result_table = prettytable.PrettyTable()
    result_table.field_names = ['Class', 'OA', 'Precision', 'Recall', 'F1_Score', 'IOU']

    for i in range(2):
        item = [i, '--']
        for j in range(len(metrics)):
            item.append(np.round(metrics[j][i].cpu().numpy(), 4))
        result_table.add_row(item)

    total = [np.round(v, 4) for v in total_metrics]
    total.insert(0, 'total')
    result_table.add_row(total)
    print(result_table)

    file_name = os.path.join(base_dir, "test_res.txt")
    f = open(file_name,"a")
    current_time = time.strftime('%Y_%m_%d %H:%M:%S {}'.format(cfg.net),time.localtime(time.time()))
    f.write(current_time+'\n')
    f.write(str(result_table)+'\n')

    # ====== 根据模式选择是否写图 ======
    if not args.tables_only:
        if not os.path.exists(masks_output_dir):
            os.makedirs(masks_output_dir)
        print(masks_output_dir)

        # 多进程写图
        t0 = time.time()
        mpp.Pool(processes=mp.cpu_count()).map(mask_save, results)
        t1 = time.time()
        img_write_time = t1 - t0
        print('images writing spends: {} s'.format(img_write_time))
    else:
        print("[Mode] --tables-only: 跳过可视化图片的生成,仅导出表格/CSV。")

    # ====== [Per-Image] 将逐图指标写成一个总 CSV ======
    per_image_csv = os.path.join(base_dir, f"per_image_metrics_{getattr(cfg,'net','model')}.csv")
    with open(per_image_csv, "w", newline="") as wf:
        writer = csv.DictWriter(
            wf,
            fieldnames=["img_id","TP","FP","TN","FN","OA","Precision","Recall","F1","IoU"]
        )
        writer.writeheader()
        for row in per_image_rows:
            row_out = dict(row)
            for k in ["OA","Precision","Recall","F1","IoU"]:
                row_out[k] = float(np.round(row_out[k], 6))
            writer.writerow(row_out)
    print(f"[Per-Image] saved CSV: {per_image_csv}")

    # ====== [Per-Image] 为每张图各自写一个小表(.txt) ======
    for row in per_image_rows:
        txt_path = os.path.join(tables_output_dir, f"{row['img_id']}_metrics.txt")
        pt = prettytable.PrettyTable()
        pt.field_names = ["Metric", "Value"]
        # 先放混淆矩阵元素
        pt.add_row(["TP", row["TP"]])
        pt.add_row(["FP", row["FP"]])
        pt.add_row(["TN", row["TN"]])
        pt.add_row(["FN", row["FN"]])
        # 再放比率类指标
        pt.add_row(["OA",       f"{row['OA']:.6f}"])
        pt.add_row(["Precision",f"{row['Precision']:.6f}"])
        pt.add_row(["Recall",   f"{row['Recall']:.6f}"])
        pt.add_row(["F1",       f"{row['F1']:.6f}"])
        pt.add_row(["IoU",      f"{row['IoU']:.6f}"])
        with open(txt_path, "w") as wf:
            wf.write(str(pt))
    print(f"[Per-Image] per-image tables saved to: {tables_output_dir}")

# ===== [PR] Export at program end =====
try:
    pr_export(base_dir, cfg)
except Exception as e:
    print(f"[PR] export skipped or failed: {e}")