File size: 20,723 Bytes
226675b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
"""
Code borrowed from https://github.com/zijundeng/pytorch-semantic-segmentation
MIT License

Copyright (c) 2017 ZijunDeng

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

import random
import math
import numbers

import numpy as np
import torchvision.transforms as torch_tr
import torch
from PIL import Image, ImageFilter, ImageOps


from skimage.filters import gaussian

class RandomGaussianBlur(object):
    """
    Apply Gaussian Blur
    """
    def __call__(self, imgs, mask):
        img, imgB = imgs[0], imgs[1]
        sigma = 0.15 + random.random() * 1.15
        blurred_img = gaussian(np.array(img), sigma=sigma, channel_axis=-1)
        blurred_img *= 255
        blurred_imgB = gaussian(np.array(imgB), sigma=sigma, channel_axis=-1)
        blurred_imgB *= 255
        return Image.fromarray(blurred_img.astype(np.uint8)), Image.fromarray(blurred_imgB.astype(np.uint8)), mask



class RandomScale(object):
    def __init__(self, scale_list=[0.75, 1.0, 1.25], mode='value'):
        self.scale_list = scale_list
        self.mode = mode

    def __call__(self, img, mask):
        oh, ow = img.size
        scale_amt = 1.0
        if self.mode == 'value':
            scale_amt = np.random.choice(self.scale_list, 1)
        elif self.mode == 'range':
            scale_amt = random.uniform(self.scale_list[0], self.scale_list[-1])
        h = int(scale_amt * oh)
        w = int(scale_amt * ow)
        return img.resize((w, h), Image.BICUBIC), mask.resize((w, h), Image.NEAREST)

class SmartCropV1(object):
    def __init__(self, crop_size=512,
                 max_ratio=0.75,
                 ignore_index=12, nopad=False):
        self.crop_size = crop_size
        self.max_ratio = max_ratio
        self.ignore_index = ignore_index
        self.crop = RandomCrop(crop_size, ignore_index=ignore_index, nopad=nopad)

    def __call__(self, img, mask):
        assert img.size == mask.size
        count = 0
        while True:
            img_crop, mask_crop = self.crop(img.copy(), mask.copy())
            count += 1
            labels, cnt = np.unique(np.array(mask_crop), return_counts=True)
            cnt = cnt[labels != self.ignore_index]
            if len(cnt) > 1 and np.max(cnt) / np.sum(cnt) < self.max_ratio:
                break
            if count > 10:
                break

        return img_crop, mask_crop



class DeNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
        for t, m, s in zip(tensor, self.mean, self.std):
            t.mul_(s).add_(m)
        return tensor


class MaskToTensor(object):
    def __call__(self, img):
        return torch.from_numpy(np.array(img, dtype=np.int32)).long()


class FreeScale(object):
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = tuple(reversed(size))  # size: (h, w)
        self.interpolation = interpolation

    def __call__(self, img):
        return img.resize(self.size, self.interpolation)


class FlipChannels(object):
    def __call__(self, img):
        img = np.array(img)[:, :, ::-1]
        return Image.fromarray(img.astype(np.uint8))

    
class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, imgs, mask):
        img ,imgB = imgs[0], imgs[1]
        assert img.size == mask.size
        for t in self.transforms:
            img, imgB, mask = t([img, imgB], mask)
        return img, imgB, mask

class RandomCrop(object):
    """
    Take a random crop from the image.

    First the image or crop size may need to be adjusted if the incoming image
    is too small...

    If the image is smaller than the crop, then:
         the image is padded up to the size of the crop
         unless 'nopad', in which case the crop size is shrunk to fit the image

    A random crop is taken such that the crop fits within the image.
    If a centroid is passed in, the crop must intersect the centroid.
    """
    def __init__(self, size, ignore_index=0, nopad=True):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.ignore_index = ignore_index
        self.nopad = nopad
        self.pad_color = (0, 0, 0)

    def __call__(self, imgs, mask, centroid=None):
        img, imgB = imgs[0], imgs[1]
        assert img.size == mask.size
        w, h = img.size
        # ASSUME H, W
        th, tw = self.size
        if w == tw and h == th:
            return img, imgB, mask

        if self.nopad:
            if th > h or tw > w:
                # Instead of padding, adjust crop size to the shorter edge of image.
                shorter_side = min(w, h)
                th, tw = shorter_side, shorter_side
        else:
            # Check if we need to pad img to fit for crop_size.
            if th > h:
                pad_h = (th - h) // 2 + 1
            else:
                pad_h = 0
            if tw > w:
                pad_w = (tw - w) // 2 + 1
            else:
                pad_w = 0
            border = (pad_w, pad_h, pad_w, pad_h)
            if pad_h or pad_w:
                img = ImageOps.expand(img, border=border, fill=self.pad_color)
                imgB = ImageOps.expand(imgB, border=border, fill=self.pad_color)
                mask = ImageOps.expand(mask, border=border, fill=self.ignore_index)
                w, h = img.size

        if centroid is not None:
            # Need to insure that centroid is covered by crop and that crop
            # sits fully within the image
            c_x, c_y = centroid
            max_x = w - tw
            max_y = h - th
            x1 = random.randint(c_x - tw, c_x)
            x1 = min(max_x, max(0, x1))
            y1 = random.randint(c_y - th, c_y)
            y1 = min(max_y, max(0, y1))
        else:
            if w == tw:
                x1 = 0
            else:
                x1 = random.randint(0, w - tw)
            if h == th:
                y1 = 0
            else:
                y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th)), imgB.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))

class CenterCrop(object):
    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img, mask):
        assert img.size == mask.size
        w, h = img.size
        th, tw = self.size
        x1 = int(round((w - tw) / 2.))
        y1 = int(round((h - th) / 2.))
        return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))


class RandomHorizontallyFlip(object):
    def __init__(self, p):
        self.p = p

    def __call__(self, imgs, mask):
        img, imgB = imgs[0], imgs[1]
        if random.random() < self.p:
            return img.transpose(Image.FLIP_LEFT_RIGHT), imgB.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(
                Image.FLIP_LEFT_RIGHT)
        return img, imgB, mask


class RandomVerticalFlip(object):
    def __init__(self, p):
        self.p = p
        
    def __call__(self, imgs, mask):
        img, imgB = imgs[0], imgs[1]
        if random.random() < self.p:
            return img.transpose(Image.FLIP_TOP_BOTTOM), imgB.transpose(Image.FLIP_TOP_BOTTOM), mask.transpose(
                Image.FLIP_TOP_BOTTOM)
        return img, imgB, mask


class FreeScale(object):
    def __init__(self, size):
        self.size = tuple(reversed(size))  # size: (h, w)

    def __call__(self, img, mask):
        assert img.size == mask.size
        return img.resize(self.size, Image.BILINEAR), mask.resize(self.size, Image.NEAREST)


class Scale(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, img, mask):
        assert img.size == mask.size
        w, h = img.size
        if (w >= h and w == self.size) or (h >= w and h == self.size):
            return img, mask
        if w > h:
            ow = self.size
            oh = int(self.size * h / w)
            return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)
        else:
            oh = self.size
            ow = int(self.size * w / h)
            return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)


class RandomSizedCrop(object):
    def __init__(self, size):
        self.size = size

    def __call__(self, img, mask):
        assert img.size == mask.size
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.45, 1.0) * area
            aspect_ratio = random.uniform(0.5, 2)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                mask = mask.crop((x1, y1, x1 + w, y1 + h))
                assert (img.size == (w, h))

                return img.resize((self.size, self.size), Image.BILINEAR), mask.resize((self.size, self.size),
                                                                                       Image.NEAREST)

        # Fallback
        scale = Scale(self.size)
        crop = CenterCrop(self.size)
        return crop(*scale(img, mask))


class RandomRotate(object):
    def __init__(self, degree):
        self.degree = degree

    def __call__(self, img, mask):
        rotate_degree = random.random() * 2 * self.degree - self.degree
        return img.rotate(rotate_degree, Image.BILINEAR), mask.rotate(rotate_degree, Image.NEAREST)


class RandomSized(object):
    def __init__(self, size):
        self.size = size
        self.scale = Scale(self.size)
        self.crop = RandomCrop(self.size)

    def __call__(self, img, mask):
        assert img.size == mask.size

        w = int(random.uniform(0.5, 2) * img.size[0])
        h = int(random.uniform(0.5, 2) * img.size[1])

        img, mask = img.resize((w, h), Image.BILINEAR), mask.resize((w, h), Image.NEAREST)

        return self.crop(*self.scale(img, mask))


class SlidingCropOld(object):
    def __init__(self, crop_size, stride_rate, ignore_label):
        self.crop_size = crop_size
        self.stride_rate = stride_rate
        self.ignore_label = ignore_label

    def _pad(self, img, mask):
        h, w = img.shape[: 2]
        pad_h = max(self.crop_size - h, 0)
        pad_w = max(self.crop_size - w, 0)
        img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
        mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label)
        return img, mask

    def __call__(self, img, mask):
        assert img.size == mask.size

        w, h = img.size
        long_size = max(h, w)

        img = np.array(img)
        mask = np.array(mask)

        if long_size > self.crop_size:
            stride = int(math.ceil(self.crop_size * self.stride_rate))
            h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1
            w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1
            img_sublist, mask_sublist = [], []
            for yy in range(h_step_num):
                for xx in range(w_step_num):
                    sy, sx = yy * stride, xx * stride
                    ey, ex = sy + self.crop_size, sx + self.crop_size
                    img_sub = img[sy: ey, sx: ex, :]
                    mask_sub = mask[sy: ey, sx: ex]
                    img_sub, mask_sub = self._pad(img_sub, mask_sub)
                    img_sublist.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB'))
                    mask_sublist.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P'))
            return img_sublist, mask_sublist
        else:
            img, mask = self._pad(img, mask)
            img = Image.fromarray(img.astype(np.uint8)).convert('RGB')
            mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
            return img, mask


class SlidingCrop(object):
    def __init__(self, crop_size, stride_rate, ignore_label):
        self.crop_size = crop_size
        self.stride_rate = stride_rate
        self.ignore_label = ignore_label

    def _pad(self, img, mask):
        h, w = img.shape[: 2]
        pad_h = max(self.crop_size - h, 0)
        pad_w = max(self.crop_size - w, 0)
        img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
        mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label)
        return img, mask, h, w

    def __call__(self, img, mask):
        assert img.size == mask.size

        w, h = img.size
        long_size = max(h, w)

        img = np.array(img)
        mask = np.array(mask)

        if long_size > self.crop_size:
            stride = int(math.ceil(self.crop_size * self.stride_rate))
            h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1
            w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1
            img_slices, mask_slices, slices_info = [], [], []
            for yy in range(h_step_num):
                for xx in range(w_step_num):
                    sy, sx = yy * stride, xx * stride
                    ey, ex = sy + self.crop_size, sx + self.crop_size
                    img_sub = img[sy: ey, sx: ex, :]
                    mask_sub = mask[sy: ey, sx: ex]
                    img_sub, mask_sub, sub_h, sub_w = self._pad(img_sub, mask_sub)
                    img_slices.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB'))
                    mask_slices.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P'))
                    slices_info.append([sy, ey, sx, ex, sub_h, sub_w])
            return img_slices, mask_slices, slices_info
        else:
            img, mask, sub_h, sub_w = self._pad(img, mask)
            img = Image.fromarray(img.astype(np.uint8)).convert('RGB')
            mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
            return [img], [mask], [[0, sub_h, 0, sub_w, sub_h, sub_w]]

class PadImage(object):
    def __init__(self, size, ignore_index):
        self.size = size
        self.ignore_index = ignore_index

        
    def __call__(self, img, mask):
        assert img.size == mask.size
        th, tw = self.size, self.size

        
        w, h = img.size
        
        if w > tw or h > th :
            wpercent = (tw/float(w))    
            target_h = int((float(img.size[1])*float(wpercent)))
            img, mask = img.resize((tw, target_h), Image.BICUBIC), mask.resize((tw, target_h), Image.NEAREST)

        w, h = img.size
        ##Pad
        img = ImageOps.expand(img, border=(0,0,tw-w, th-h), fill=0)
        mask = ImageOps.expand(mask, border=(0,0,tw-w, th-h), fill=self.ignore_index)
        
        return img, mask

class Resize(object):
    """
    Resize image to exact size of crop
    """

    def __init__(self, size):
        self.size = (size, size)

    def __call__(self, img, mask):
        assert img.size == mask.size
        w, h = img.size
        if (w == h and w == self.size):
            return img, mask
        return (img.resize(self.size, Image.BICUBIC),
                mask.resize(self.size, Image.NEAREST))

class ResizeImage(object):
    """
    Resize image to exact size of crop
    """

    def __init__(self, size):
        self.size = (size, size)

    def __call__(self, img, mask):
        assert img.size == mask.size
        w, h = img.size
        if (w == h and w == self.size):
            return img, mask
        return (img.resize(self.size, Image.BICUBIC),
                mask)

class RandomSizeAndCrop(object):
    def __init__(self, size, crop_nopad,
                 scale_min=1, scale_max=1.2, ignore_index=0, pre_size=None):
        self.size = size
        self.crop = RandomCrop(self.size, ignore_index=ignore_index, nopad=crop_nopad)
        self.scale_min = scale_min
        self.scale_max = scale_max
        self.pre_size = pre_size

    def __call__(self, imgs, mask, centroid=None):
        img, imgB = imgs[0], imgs[1]
        assert img.size == mask.size

        # first, resize such that shorter edge is pre_size
        if self.pre_size is None:
            scale_amt = 1.
        elif img.size[1] < img.size[0]:
            scale_amt = self.pre_size / img.size[1]
        else:
            scale_amt = self.pre_size / img.size[0]
        scale_amt *= random.uniform(self.scale_min, self.scale_max)
        w, h = [int(i * scale_amt) for i in img.size]

        if centroid is not None:
            centroid = [int(c * scale_amt) for c in centroid]

        img, imgB, mask = img.resize((w, h), Image.BICUBIC), imgB.resize((w, h), Image.BICUBIC), mask.resize((w, h), Image.NEAREST)

        return self.crop([img, imgB], mask, centroid)

class ColorJitter(object):
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
        brightness (float): How much to jitter brightness. brightness_factor
            is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
        contrast (float): How much to jitter contrast. contrast_factor
            is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
        saturation (float): How much to jitter saturation. saturation_factor
            is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
        hue(float): How much to jitter hue. hue_factor is chosen uniformly from
            [-hue, hue]. Should be >=0 and <= 0.5.
    """
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    @staticmethod
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
        if brightness > 0:
            brightness_factor = np.random.uniform(max(0, 1 - brightness), 1 + brightness)
            transforms.append(
                torch_tr.Lambda(lambda img: adjust_brightness(img, brightness_factor)))

        if contrast > 0:
            contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast)
            transforms.append(
                torch_tr.Lambda(lambda img: adjust_contrast(img, contrast_factor)))

        if saturation > 0:
            saturation_factor = np.random.uniform(max(0, 1 - saturation), 1 + saturation)
            transforms.append(
                torch_tr.Lambda(lambda img: adjust_saturation(img, saturation_factor)))

        if hue > 0:
            hue_factor = np.random.uniform(-hue, hue)
            transforms.append(
                torch_tr.Lambda(lambda img: adjust_hue(img, hue_factor)))

        np.random.shuffle(transforms)
        transform = torch_tr.Compose(transforms)

        return transform

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Input image.

        Returns:
            PIL Image: Color jittered image.
        """
        transform = self.get_params(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)