File size: 20,723 Bytes
226675b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
"""
Code borrowed from https://github.com/zijundeng/pytorch-semantic-segmentation
MIT License
Copyright (c) 2017 ZijunDeng
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import random
import math
import numbers
import numpy as np
import torchvision.transforms as torch_tr
import torch
from PIL import Image, ImageFilter, ImageOps
from skimage.filters import gaussian
class RandomGaussianBlur(object):
"""
Apply Gaussian Blur
"""
def __call__(self, imgs, mask):
img, imgB = imgs[0], imgs[1]
sigma = 0.15 + random.random() * 1.15
blurred_img = gaussian(np.array(img), sigma=sigma, channel_axis=-1)
blurred_img *= 255
blurred_imgB = gaussian(np.array(imgB), sigma=sigma, channel_axis=-1)
blurred_imgB *= 255
return Image.fromarray(blurred_img.astype(np.uint8)), Image.fromarray(blurred_imgB.astype(np.uint8)), mask
class RandomScale(object):
def __init__(self, scale_list=[0.75, 1.0, 1.25], mode='value'):
self.scale_list = scale_list
self.mode = mode
def __call__(self, img, mask):
oh, ow = img.size
scale_amt = 1.0
if self.mode == 'value':
scale_amt = np.random.choice(self.scale_list, 1)
elif self.mode == 'range':
scale_amt = random.uniform(self.scale_list[0], self.scale_list[-1])
h = int(scale_amt * oh)
w = int(scale_amt * ow)
return img.resize((w, h), Image.BICUBIC), mask.resize((w, h), Image.NEAREST)
class SmartCropV1(object):
def __init__(self, crop_size=512,
max_ratio=0.75,
ignore_index=12, nopad=False):
self.crop_size = crop_size
self.max_ratio = max_ratio
self.ignore_index = ignore_index
self.crop = RandomCrop(crop_size, ignore_index=ignore_index, nopad=nopad)
def __call__(self, img, mask):
assert img.size == mask.size
count = 0
while True:
img_crop, mask_crop = self.crop(img.copy(), mask.copy())
count += 1
labels, cnt = np.unique(np.array(mask_crop), return_counts=True)
cnt = cnt[labels != self.ignore_index]
if len(cnt) > 1 and np.max(cnt) / np.sum(cnt) < self.max_ratio:
break
if count > 10:
break
return img_crop, mask_crop
class DeNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
for t, m, s in zip(tensor, self.mean, self.std):
t.mul_(s).add_(m)
return tensor
class MaskToTensor(object):
def __call__(self, img):
return torch.from_numpy(np.array(img, dtype=np.int32)).long()
class FreeScale(object):
def __init__(self, size, interpolation=Image.BILINEAR):
self.size = tuple(reversed(size)) # size: (h, w)
self.interpolation = interpolation
def __call__(self, img):
return img.resize(self.size, self.interpolation)
class FlipChannels(object):
def __call__(self, img):
img = np.array(img)[:, :, ::-1]
return Image.fromarray(img.astype(np.uint8))
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, imgs, mask):
img ,imgB = imgs[0], imgs[1]
assert img.size == mask.size
for t in self.transforms:
img, imgB, mask = t([img, imgB], mask)
return img, imgB, mask
class RandomCrop(object):
"""
Take a random crop from the image.
First the image or crop size may need to be adjusted if the incoming image
is too small...
If the image is smaller than the crop, then:
the image is padded up to the size of the crop
unless 'nopad', in which case the crop size is shrunk to fit the image
A random crop is taken such that the crop fits within the image.
If a centroid is passed in, the crop must intersect the centroid.
"""
def __init__(self, size, ignore_index=0, nopad=True):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.ignore_index = ignore_index
self.nopad = nopad
self.pad_color = (0, 0, 0)
def __call__(self, imgs, mask, centroid=None):
img, imgB = imgs[0], imgs[1]
assert img.size == mask.size
w, h = img.size
# ASSUME H, W
th, tw = self.size
if w == tw and h == th:
return img, imgB, mask
if self.nopad:
if th > h or tw > w:
# Instead of padding, adjust crop size to the shorter edge of image.
shorter_side = min(w, h)
th, tw = shorter_side, shorter_side
else:
# Check if we need to pad img to fit for crop_size.
if th > h:
pad_h = (th - h) // 2 + 1
else:
pad_h = 0
if tw > w:
pad_w = (tw - w) // 2 + 1
else:
pad_w = 0
border = (pad_w, pad_h, pad_w, pad_h)
if pad_h or pad_w:
img = ImageOps.expand(img, border=border, fill=self.pad_color)
imgB = ImageOps.expand(imgB, border=border, fill=self.pad_color)
mask = ImageOps.expand(mask, border=border, fill=self.ignore_index)
w, h = img.size
if centroid is not None:
# Need to insure that centroid is covered by crop and that crop
# sits fully within the image
c_x, c_y = centroid
max_x = w - tw
max_y = h - th
x1 = random.randint(c_x - tw, c_x)
x1 = min(max_x, max(0, x1))
y1 = random.randint(c_y - th, c_y)
y1 = min(max_y, max(0, y1))
else:
if w == tw:
x1 = 0
else:
x1 = random.randint(0, w - tw)
if h == th:
y1 = 0
else:
y1 = random.randint(0, h - th)
return img.crop((x1, y1, x1 + tw, y1 + th)), imgB.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))
class CenterCrop(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
th, tw = self.size
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))
class RandomHorizontallyFlip(object):
def __init__(self, p):
self.p = p
def __call__(self, imgs, mask):
img, imgB = imgs[0], imgs[1]
if random.random() < self.p:
return img.transpose(Image.FLIP_LEFT_RIGHT), imgB.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(
Image.FLIP_LEFT_RIGHT)
return img, imgB, mask
class RandomVerticalFlip(object):
def __init__(self, p):
self.p = p
def __call__(self, imgs, mask):
img, imgB = imgs[0], imgs[1]
if random.random() < self.p:
return img.transpose(Image.FLIP_TOP_BOTTOM), imgB.transpose(Image.FLIP_TOP_BOTTOM), mask.transpose(
Image.FLIP_TOP_BOTTOM)
return img, imgB, mask
class FreeScale(object):
def __init__(self, size):
self.size = tuple(reversed(size)) # size: (h, w)
def __call__(self, img, mask):
assert img.size == mask.size
return img.resize(self.size, Image.BILINEAR), mask.resize(self.size, Image.NEAREST)
class Scale(object):
def __init__(self, size):
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
if (w >= h and w == self.size) or (h >= w and h == self.size):
return img, mask
if w > h:
ow = self.size
oh = int(self.size * h / w)
return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)
else:
oh = self.size
ow = int(self.size * w / h)
return img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)
class RandomSizedCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
for attempt in range(10):
area = img.size[0] * img.size[1]
target_area = random.uniform(0.45, 1.0) * area
aspect_ratio = random.uniform(0.5, 2)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img.size[0] and h <= img.size[1]:
x1 = random.randint(0, img.size[0] - w)
y1 = random.randint(0, img.size[1] - h)
img = img.crop((x1, y1, x1 + w, y1 + h))
mask = mask.crop((x1, y1, x1 + w, y1 + h))
assert (img.size == (w, h))
return img.resize((self.size, self.size), Image.BILINEAR), mask.resize((self.size, self.size),
Image.NEAREST)
# Fallback
scale = Scale(self.size)
crop = CenterCrop(self.size)
return crop(*scale(img, mask))
class RandomRotate(object):
def __init__(self, degree):
self.degree = degree
def __call__(self, img, mask):
rotate_degree = random.random() * 2 * self.degree - self.degree
return img.rotate(rotate_degree, Image.BILINEAR), mask.rotate(rotate_degree, Image.NEAREST)
class RandomSized(object):
def __init__(self, size):
self.size = size
self.scale = Scale(self.size)
self.crop = RandomCrop(self.size)
def __call__(self, img, mask):
assert img.size == mask.size
w = int(random.uniform(0.5, 2) * img.size[0])
h = int(random.uniform(0.5, 2) * img.size[1])
img, mask = img.resize((w, h), Image.BILINEAR), mask.resize((w, h), Image.NEAREST)
return self.crop(*self.scale(img, mask))
class SlidingCropOld(object):
def __init__(self, crop_size, stride_rate, ignore_label):
self.crop_size = crop_size
self.stride_rate = stride_rate
self.ignore_label = ignore_label
def _pad(self, img, mask):
h, w = img.shape[: 2]
pad_h = max(self.crop_size - h, 0)
pad_w = max(self.crop_size - w, 0)
img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label)
return img, mask
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
long_size = max(h, w)
img = np.array(img)
mask = np.array(mask)
if long_size > self.crop_size:
stride = int(math.ceil(self.crop_size * self.stride_rate))
h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1
w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1
img_sublist, mask_sublist = [], []
for yy in range(h_step_num):
for xx in range(w_step_num):
sy, sx = yy * stride, xx * stride
ey, ex = sy + self.crop_size, sx + self.crop_size
img_sub = img[sy: ey, sx: ex, :]
mask_sub = mask[sy: ey, sx: ex]
img_sub, mask_sub = self._pad(img_sub, mask_sub)
img_sublist.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB'))
mask_sublist.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P'))
return img_sublist, mask_sublist
else:
img, mask = self._pad(img, mask)
img = Image.fromarray(img.astype(np.uint8)).convert('RGB')
mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
return img, mask
class SlidingCrop(object):
def __init__(self, crop_size, stride_rate, ignore_label):
self.crop_size = crop_size
self.stride_rate = stride_rate
self.ignore_label = ignore_label
def _pad(self, img, mask):
h, w = img.shape[: 2]
pad_h = max(self.crop_size - h, 0)
pad_w = max(self.crop_size - w, 0)
img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant', constant_values=self.ignore_label)
return img, mask, h, w
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
long_size = max(h, w)
img = np.array(img)
mask = np.array(mask)
if long_size > self.crop_size:
stride = int(math.ceil(self.crop_size * self.stride_rate))
h_step_num = int(math.ceil((h - self.crop_size) / float(stride))) + 1
w_step_num = int(math.ceil((w - self.crop_size) / float(stride))) + 1
img_slices, mask_slices, slices_info = [], [], []
for yy in range(h_step_num):
for xx in range(w_step_num):
sy, sx = yy * stride, xx * stride
ey, ex = sy + self.crop_size, sx + self.crop_size
img_sub = img[sy: ey, sx: ex, :]
mask_sub = mask[sy: ey, sx: ex]
img_sub, mask_sub, sub_h, sub_w = self._pad(img_sub, mask_sub)
img_slices.append(Image.fromarray(img_sub.astype(np.uint8)).convert('RGB'))
mask_slices.append(Image.fromarray(mask_sub.astype(np.uint8)).convert('P'))
slices_info.append([sy, ey, sx, ex, sub_h, sub_w])
return img_slices, mask_slices, slices_info
else:
img, mask, sub_h, sub_w = self._pad(img, mask)
img = Image.fromarray(img.astype(np.uint8)).convert('RGB')
mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
return [img], [mask], [[0, sub_h, 0, sub_w, sub_h, sub_w]]
class PadImage(object):
def __init__(self, size, ignore_index):
self.size = size
self.ignore_index = ignore_index
def __call__(self, img, mask):
assert img.size == mask.size
th, tw = self.size, self.size
w, h = img.size
if w > tw or h > th :
wpercent = (tw/float(w))
target_h = int((float(img.size[1])*float(wpercent)))
img, mask = img.resize((tw, target_h), Image.BICUBIC), mask.resize((tw, target_h), Image.NEAREST)
w, h = img.size
##Pad
img = ImageOps.expand(img, border=(0,0,tw-w, th-h), fill=0)
mask = ImageOps.expand(mask, border=(0,0,tw-w, th-h), fill=self.ignore_index)
return img, mask
class Resize(object):
"""
Resize image to exact size of crop
"""
def __init__(self, size):
self.size = (size, size)
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
if (w == h and w == self.size):
return img, mask
return (img.resize(self.size, Image.BICUBIC),
mask.resize(self.size, Image.NEAREST))
class ResizeImage(object):
"""
Resize image to exact size of crop
"""
def __init__(self, size):
self.size = (size, size)
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
if (w == h and w == self.size):
return img, mask
return (img.resize(self.size, Image.BICUBIC),
mask)
class RandomSizeAndCrop(object):
def __init__(self, size, crop_nopad,
scale_min=1, scale_max=1.2, ignore_index=0, pre_size=None):
self.size = size
self.crop = RandomCrop(self.size, ignore_index=ignore_index, nopad=crop_nopad)
self.scale_min = scale_min
self.scale_max = scale_max
self.pre_size = pre_size
def __call__(self, imgs, mask, centroid=None):
img, imgB = imgs[0], imgs[1]
assert img.size == mask.size
# first, resize such that shorter edge is pre_size
if self.pre_size is None:
scale_amt = 1.
elif img.size[1] < img.size[0]:
scale_amt = self.pre_size / img.size[1]
else:
scale_amt = self.pre_size / img.size[0]
scale_amt *= random.uniform(self.scale_min, self.scale_max)
w, h = [int(i * scale_amt) for i in img.size]
if centroid is not None:
centroid = [int(c * scale_amt) for c in centroid]
img, imgB, mask = img.resize((w, h), Image.BICUBIC), imgB.resize((w, h), Image.BICUBIC), mask.resize((w, h), Image.NEAREST)
return self.crop([img, imgB], mask, centroid)
class ColorJitter(object):
"""Randomly change the brightness, contrast and saturation of an image.
Args:
brightness (float): How much to jitter brightness. brightness_factor
is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
contrast (float): How much to jitter contrast. contrast_factor
is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
saturation (float): How much to jitter saturation. saturation_factor
is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
hue(float): How much to jitter hue. hue_factor is chosen uniformly from
[-hue, hue]. Should be >=0 and <= 0.5.
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
@staticmethod
def get_params(brightness, contrast, saturation, hue):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms = []
if brightness > 0:
brightness_factor = np.random.uniform(max(0, 1 - brightness), 1 + brightness)
transforms.append(
torch_tr.Lambda(lambda img: adjust_brightness(img, brightness_factor)))
if contrast > 0:
contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast)
transforms.append(
torch_tr.Lambda(lambda img: adjust_contrast(img, contrast_factor)))
if saturation > 0:
saturation_factor = np.random.uniform(max(0, 1 - saturation), 1 + saturation)
transforms.append(
torch_tr.Lambda(lambda img: adjust_saturation(img, saturation_factor)))
if hue > 0:
hue_factor = np.random.uniform(-hue, hue)
transforms.append(
torch_tr.Lambda(lambda img: adjust_hue(img, hue_factor)))
np.random.shuffle(transforms)
transform = torch_tr.Compose(transforms)
return transform
def __call__(self, img):
"""
Args:
img (PIL Image): Input image.
Returns:
PIL Image: Color jittered image.
"""
transform = self.get_params(self.brightness, self.contrast,
self.saturation, self.hue)
return transform(img)
|