File size: 19,150 Bytes
226675b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import torch
import torch.nn as nn
import torch.nn.functional as F
from rscd.models.backbones.vmamba import VSSM, LayerNorm2d, VSSBlock, Permute


class ChangeDecoder(nn.Module):
    def __init__(self, encoder_dims, channel_first, norm_layer, ssm_act_layer, mlp_act_layer, **kwargs):
        super(ChangeDecoder, self).__init__()

        # Define the VSS Block for Spatio-temporal relationship modelling
        self.st_block_41 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-1] * 2, out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )
        self.st_block_42 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-1], out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),

        )
        self.st_block_43 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-1], out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )

        self.st_block_31 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-2] * 2, out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )
        self.st_block_32 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-2], out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )
        self.st_block_33 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-2], out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )

        self.st_block_21 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-3] * 2, out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )
        self.st_block_22 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-3], out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )
        self.st_block_23 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-3], out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )

        self.st_block_11 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-4] * 2, out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )
        self.st_block_12 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-4], out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )
        self.st_block_13 = nn.Sequential(
            nn.Conv2d(kernel_size=1, in_channels=encoder_dims[-4], out_channels=128),
            Permute(0, 2, 3, 1) if not channel_first else nn.Identity(),
            VSSBlock(hidden_dim=128, drop_path=0.1, norm_layer=norm_layer, channel_first=channel_first,
                ssm_d_state=kwargs['ssm_d_state'], ssm_ratio=kwargs['ssm_ratio'], ssm_dt_rank=kwargs['ssm_dt_rank'], ssm_act_layer=ssm_act_layer,
                ssm_conv=kwargs['ssm_conv'], ssm_conv_bias=kwargs['ssm_conv_bias'], ssm_drop_rate=kwargs['ssm_drop_rate'], ssm_init=kwargs['ssm_init'],
                forward_type=kwargs['forward_type'], mlp_ratio=kwargs['mlp_ratio'], mlp_act_layer=mlp_act_layer, mlp_drop_rate=kwargs['mlp_drop_rate'],
                gmlp=kwargs['gmlp'], use_checkpoint=kwargs['use_checkpoint']),
            Permute(0, 3, 1, 2) if not channel_first else nn.Identity(),
        )

        # Fuse layer  
        self.fuse_layer_4 = nn.Sequential(nn.Conv2d(kernel_size=1, in_channels=128 * 5, out_channels=128),
                                          nn.BatchNorm2d(128), nn.ReLU())
        self.fuse_layer_3 = nn.Sequential(nn.Conv2d(kernel_size=1, in_channels=128 * 5, out_channels=128),
                                          nn.BatchNorm2d(128), nn.ReLU())
        self.fuse_layer_2 = nn.Sequential(nn.Conv2d(kernel_size=1, in_channels=128 * 5, out_channels=128),
                                          nn.BatchNorm2d(128), nn.ReLU())
        self.fuse_layer_1 = nn.Sequential(nn.Conv2d(kernel_size=1, in_channels=128 * 5, out_channels=128),
                                          nn.BatchNorm2d(128), nn.ReLU())

        # Smooth layer
        self.smooth_layer_3 = ResBlock(in_channels=128, out_channels=128, stride=1) 
        self.smooth_layer_2 = ResBlock(in_channels=128, out_channels=128, stride=1) 
        self.smooth_layer_1 = ResBlock(in_channels=128, out_channels=128, stride=1) 
    
    def _upsample_add(self, x, y):
        _, _, H, W = y.size()
        return F.interpolate(x, size=(H, W), mode='bilinear') + y

    def forward(self, pre_features, post_features):

        pre_feat_1, pre_feat_2, pre_feat_3, pre_feat_4 = pre_features

        post_feat_1, post_feat_2, post_feat_3, post_feat_4 = post_features

        '''
            Stage I
        '''
        p41 = self.st_block_41(torch.cat([pre_feat_4, post_feat_4], dim=1))
        B, C, H, W = pre_feat_4.size()
        # Create an empty tensor of the correct shape (B, C, H, 2*W)
        ct_tensor_42 = torch.empty(B, C, H, 2*W).cuda()
        # Fill in odd columns with A and even columns with B
        ct_tensor_42[:, :, :, ::2] = pre_feat_4  # Odd columns
        ct_tensor_42[:, :, :, 1::2] = post_feat_4  # Even columns
        p42 = self.st_block_42(ct_tensor_42)

        ct_tensor_43 = torch.empty(B, C, H, 2*W).cuda()
        ct_tensor_43[:, :, :, 0:W] = pre_feat_4
        ct_tensor_43[:, :, :, W:] = post_feat_4
        p43 = self.st_block_43(ct_tensor_43)

        p4 = self.fuse_layer_4(torch.cat([p41, p42[:, :, :, ::2], p42[:, :, :, 1::2], p43[:, :, :, 0:W], p43[:, :, :, W:]], dim=1))
       

        '''
            Stage II
        '''
        p31 = self.st_block_31(torch.cat([pre_feat_3, post_feat_3], dim=1))
        B, C, H, W = pre_feat_3.size()
        # Create an empty tensor of the correct shape (B, C, H, 2*W)
        ct_tensor_32 = torch.empty(B, C, H, 2*W).cuda()
        # Fill in odd columns with A and even columns with B
        ct_tensor_32[:, :, :, ::2] = pre_feat_3  # Odd columns
        ct_tensor_32[:, :, :, 1::2] = post_feat_3  # Even columns
        p32 = self.st_block_32(ct_tensor_32)

        ct_tensor_33 = torch.empty(B, C, H, 2*W).cuda()
        ct_tensor_33[:, :, :, 0:W] = pre_feat_3
        ct_tensor_33[:, :, :, W:] = post_feat_3
        p33 = self.st_block_33(ct_tensor_33)

        p3 = self.fuse_layer_3(torch.cat([p31, p32[:, :, :, ::2], p32[:, :, :, 1::2], p33[:, :, :, 0:W], p33[:, :, :, W:]], dim=1))
        p3 = self._upsample_add(p4, p3)
        p3 = self.smooth_layer_3(p3)
       
        '''
            Stage III
        '''
        p21 = self.st_block_21(torch.cat([pre_feat_2, post_feat_2], dim=1))
        B, C, H, W = pre_feat_2.size()
        # Create an empty tensor of the correct shape (B, C, H, 2*W)
        ct_tensor_22 = torch.empty(B, C, H, 2*W).cuda()
        # Fill in odd columns with A and even columns with B
        ct_tensor_22[:, :, :, ::2] = pre_feat_2  # Odd columns
        ct_tensor_22[:, :, :, 1::2] = post_feat_2  # Even columns
        p22 = self.st_block_22(ct_tensor_22)

        ct_tensor_23 = torch.empty(B, C, H, 2*W).cuda()
        ct_tensor_23[:, :, :, 0:W] = pre_feat_2
        ct_tensor_23[:, :, :, W:] = post_feat_2
        p23 = self.st_block_23(ct_tensor_23)

        p2 = self.fuse_layer_2(torch.cat([p21, p22[:, :, :, ::2], p22[:, :, :, 1::2], p23[:, :, :, 0:W], p23[:, :, :, W:]], dim=1))
        p2 = self._upsample_add(p3, p2)
        p2 = self.smooth_layer_2(p2)
       
        '''
            Stage IV
        '''
        p11 = self.st_block_11(torch.cat([pre_feat_1, post_feat_1], dim=1))
        B, C, H, W = pre_feat_1.size()
        # Create an empty tensor of the correct shape (B, C, H, 2*W)
        ct_tensor_12 = torch.empty(B, C, H, 2*W).cuda()
        # Fill in odd columns with A and even columns with B
        ct_tensor_12[:, :, :, ::2] = pre_feat_1  # Odd columns
        ct_tensor_12[:, :, :, 1::2] = post_feat_1  # Even columns
        p12 = self.st_block_12(ct_tensor_12)

        ct_tensor_13 = torch.empty(B, C, H, 2*W).cuda()
        ct_tensor_13[:, :, :, 0:W] = pre_feat_1
        ct_tensor_13[:, :, :, W:] = post_feat_1
        p13 = self.st_block_13(ct_tensor_13)

        p1 = self.fuse_layer_1(torch.cat([p11, p12[:, :, :, ::2], p12[:, :, :, 1::2], p13[:, :, :, 0:W], p13[:, :, :, W:]], dim=1))

        p1 = self._upsample_add(p2, p1)
        p1 = self.smooth_layer_1(p1)

        return p1

   
class ResBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

class CMDecoder(nn.Module):
    def __init__(self, **kwargs):
        super(CMDecoder, self).__init__()
        
        _NORMLAYERS = dict(
            ln=nn.LayerNorm,
            ln2d=LayerNorm2d,
            bn=nn.BatchNorm2d,
        )
        
        _ACTLAYERS = dict(
            silu=nn.SiLU, 
            gelu=nn.GELU, 
            relu=nn.ReLU, 
            sigmoid=nn.Sigmoid,
        )
 

        norm_layer: nn.Module = _NORMLAYERS.get(kwargs['norm_layer'].lower(), None)        
        ssm_act_layer: nn.Module = _ACTLAYERS.get(kwargs['ssm_act_layer'].lower(), None)
        mlp_act_layer: nn.Module = _ACTLAYERS.get(kwargs['mlp_act_layer'].lower(), None)

        # Remove the explicitly passed args from kwargs to avoid "got multiple values" error
        clean_kwargs = {k: v for k, v in kwargs.items() if k not in ['norm_layer', 'ssm_act_layer', 'mlp_act_layer']}
        self.decoder = ChangeDecoder(
            encoder_dims= [int(kwargs['dims'] * 2 ** i_layer) for i_layer in range(len(kwargs['depths']))],
            channel_first=True,
            norm_layer=norm_layer,
            ssm_act_layer=ssm_act_layer,
            mlp_act_layer=mlp_act_layer,
            **clean_kwargs
        )

        self.main_clf = nn.Conv2d(in_channels=128, out_channels=2, kernel_size=1)

    def _upsample_add(self, x, y):
        _, _, H, W = y.size()
        return F.interpolate(x, size=(H, W), mode='bilinear') + y

    def forward(self, xs):
        pre_features, post_features, pre_data_size = xs
        # Decoder processing - passing encoder outputs to the decoder
        output = self.decoder(pre_features, post_features)

        output = self.main_clf(output)
        output = F.interpolate(output, size=pre_data_size, mode='bilinear')
        return output