File size: 16,636 Bytes
226675b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# spatial and temporal feature fusion for change detection of remote sensing images
# STNet11
# Author: xwma
# Time: 2022.11.2

from turtle import forward

import torch 
import torch.nn as nn
import torch.nn.functional as F
import sys
# from models.swintransformer import *
import math

def conv_3x3(in_channel, out_channel):
    return nn.Sequential(
        nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False),
        nn.BatchNorm2d(out_channel),
        nn.ReLU(inplace=True)
    )

def dsconv_3x3(in_channel, out_channel):
    return nn.Sequential(
        nn.Conv2d(in_channel, in_channel, kernel_size=3, stride=1, padding=1, groups=in_channel),
        nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=1, padding=0, groups=1),
        nn.BatchNorm2d(out_channel),
        nn.ReLU(inplace=True)
    )

def conv_1x1(in_channel, out_channel):
    return nn.Sequential(
        nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=1, padding=0, bias=False),
        nn.BatchNorm2d(out_channel),
        nn.ReLU(inplace=True)
    )

class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        self.fc = nn.Sequential(
            nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False),
            nn.ReLU(),
            nn.Conv2d(in_planes//16, in_planes, 1, bias=False)
        )
        self.sigmoid = nn.Sigmoid()
    
    def forward(self, x):
        avg_out = self.fc(self.avg_pool(x))
        max_out = self.fc(self.max_pool(x))
        out = avg_out + max_out
        return self.sigmoid(out)

class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
        self.sigmoid = nn.Sigmoid()
    
    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)



class SelfAttentionBlock(nn.Module):
    """
    query_feats: (B, C, h, w)
    key_feats: (B, C, h, w)
    value_feats: (B, C, h, w)

    output: (B, C, h, w)
    """
    def __init__(self, key_in_channels, query_in_channels, transform_channels, out_channels,
                 key_query_num_convs, value_out_num_convs):
        super(SelfAttentionBlock, self).__init__()
        self.key_project = self.buildproject(
            in_channels=key_in_channels,
            out_channels=transform_channels,
            num_convs=key_query_num_convs,
        )
        self.query_project = self.buildproject(
            in_channels=query_in_channels,
            out_channels=transform_channels,
            num_convs=key_query_num_convs
        )
        self.value_project = self.buildproject(
            in_channels=key_in_channels,
            out_channels=transform_channels,
            num_convs=value_out_num_convs
        )
        self.out_project = self.buildproject(
            in_channels=transform_channels,
            out_channels=out_channels,
            num_convs=value_out_num_convs
        )
        self.transform_channels = transform_channels

    def forward(self, query_feats, key_feats, value_feats):
        batch_size = query_feats.size(0)

        query = self.query_project(query_feats)
        query = query.reshape(*query.shape[:2], -1)
        query = query.permute(0, 2, 1).contiguous() #(B, h*w, C)

        key = self.key_project(key_feats)
        key = key.reshape(*key.shape[:2], -1) # (B, C, h*w)

        value = self.value_project(value_feats)
        value = value.reshape(*value.shape[:2], -1)
        value = value.permute(0, 2, 1).contiguous() # (B, h*w, C)

        sim_map = torch.matmul(query, key)
       
        sim_map = (self.transform_channels ** -0.5) * sim_map
        sim_map = F.softmax(sim_map, dim=-1) #(B, h*w, K)
        
        context = torch.matmul(sim_map, value) #(B, h*w, C)
        context = context.permute(0, 2, 1).contiguous()
        context = context.reshape(batch_size, -1, *query_feats.shape[2:]) #(B, C, h, w)

        context = self.out_project(context) #(B, C, h, w)
        return context
    def buildproject(self, in_channels, out_channels, num_convs):
        convs = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )
        for _ in range(num_convs-1):
            convs.append(
                nn.Sequential(
                    nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
                    nn.BatchNorm2d(out_channels),
                    nn.ReLU(inplace=True)
                )
            )
        if len(convs) > 1:
            return nn.Sequential(*convs)
        return convs[0]

class TFF(nn.Module):
    def __init__(self, in_channel, out_channel):
        super(TFF, self).__init__()
        self.catconvA = dsconv_3x3(in_channel * 2, in_channel)
        self.catconvB = dsconv_3x3(in_channel * 2, in_channel)
        self.catconv = dsconv_3x3(in_channel * 2, out_channel)
        self.convA = nn.Conv2d(in_channel, 1, 1)
        self.convB = nn.Conv2d(in_channel, 1, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, xA, xB):
        x_diff = xA - xB

        x_diffA = self.catconvA(torch.cat([x_diff, xA], dim=1))
        x_diffB = self.catconvB(torch.cat([x_diff, xB], dim=1))

        A_weight = self.sigmoid(self.convA(x_diffA))
        B_weight = self.sigmoid(self.convB(x_diffB))

        xA = A_weight * xA
        xB = B_weight * xB

        x = self.catconv(torch.cat([xA, xB], dim=1))

        return x

class SFF(nn.Module):
    def __init__(self, in_channel):
        super(SFF, self).__init__()
        self.conv_small = conv_1x1(in_channel, in_channel)
        self.conv_big = conv_1x1(in_channel, in_channel)
        self.catconv = conv_3x3(in_channel*2, in_channel)
        self.attention = SelfAttentionBlock(
            key_in_channels=in_channel,
            query_in_channels = in_channel,
            transform_channels = in_channel // 2,
            out_channels = in_channel,
            key_query_num_convs=2,
            value_out_num_convs=1
        )
    
    def forward(self, x_small, x_big):
        img_size  =x_big.size(2), x_big.size(3)
        x_small = F.interpolate(x_small, img_size, mode="bilinear", align_corners=False)
        x = self.conv_small(x_small) + self.conv_big(x_big)
        new_x = self.attention(x, x, x_big)

        out = self.catconv(torch.cat([new_x, x_big], dim=1))
        return out

class SSFF(nn.Module):
    def __init__(self):
        super(SSFF, self).__init__()
        self.spatial = SpatialAttention()
    def forward(self, x_small, x_big):
        img_shape = x_small.size(2), x_small.size(3)
        big_weight = self.spatial(x_big)
        big_weight = F.interpolate(big_weight, img_shape, mode="bilinear", align_corners=False)
        x_small = big_weight * x_small
        return x_small

class LightDecoder(nn.Module):
    def __init__(self, in_channel, num_class):
        super(LightDecoder, self).__init__()
        self.catconv = conv_3x3(in_channel*4, in_channel)
        self.decoder = nn.Conv2d(in_channel, num_class, 1)
    
    def forward(self, x1, x2, x3, x4):
        x2 = F.interpolate(x2, scale_factor=2, mode="bilinear")
        x3 = F.interpolate(x3, scale_factor=4, mode="bilinear")
        x4 = F.interpolate(x4, scale_factor=8, mode="bilinear")

        out = self.decoder(self.catconv(torch.cat([x1, x2, x3, x4], dim=1)))
        return out



# fca
def get_freq_indices(method):
    assert method in ['top1','top2','top4','top8','top16','top32',
                      'bot1','bot2','bot4','bot8','bot16','bot32',
                      'low1','low2','low4','low8','low16','low32']
    num_freq = int(method[3:])
    if 'top' in method:
        all_top_indices_x = [0,0,6,0,0,1,1,4,5,1,3,0,0,0,3,2,4,6,3,5,5,2,6,5,5,3,3,4,2,2,6,1]
        all_top_indices_y = [0,1,0,5,2,0,2,0,0,6,0,4,6,3,5,2,6,3,3,3,5,1,1,2,4,2,1,1,3,0,5,3]
        mapper_x = all_top_indices_x[:num_freq]
        mapper_y = all_top_indices_y[:num_freq]
    elif 'low' in method:
        all_low_indices_x = [0,0,1,1,0,2,2,1,2,0,3,4,0,1,3,0,1,2,3,4,5,0,1,2,3,4,5,6,1,2,3,4]
        all_low_indices_y = [0,1,0,1,2,0,1,2,2,3,0,0,4,3,1,5,4,3,2,1,0,6,5,4,3,2,1,0,6,5,4,3]
        mapper_x = all_low_indices_x[:num_freq]
        mapper_y = all_low_indices_y[:num_freq]
    elif 'bot' in method:
        all_bot_indices_x = [6,1,3,3,2,4,1,2,4,4,5,1,4,6,2,5,6,1,6,2,2,4,3,3,5,5,6,2,5,5,3,6]
        all_bot_indices_y = [6,4,4,6,6,3,1,4,4,5,6,5,2,2,5,1,4,3,5,0,3,1,1,2,4,2,1,1,5,3,3,3]
        mapper_x = all_bot_indices_x[:num_freq]
        mapper_y = all_bot_indices_y[:num_freq]
    else:
        raise NotImplementedError
    return mapper_x, mapper_y

class MultiSpectralAttentionLayer(torch.nn.Module):
    # MultiSpectralAttentionLayer(planes * 4, c2wh[planes], c2wh[planes],  reduction=reduction, freq_sel_method = 'top16')
    # c2wh = dict([(64,56), (128,28), (256,14) ,(512,7)])
    # planes * 4 -> channel, c2wh[planes] -> dct_h, c2wh[planes] -> dct_w
    # (64*4,56,56)
    def __init__(self, channel, dct_h, dct_w, reduction = 16, freq_sel_method = 'top16'):
        super(MultiSpectralAttentionLayer, self).__init__()
        self.reduction = reduction
        self.dct_h = dct_h
        self.dct_w = dct_w

        mapper_x, mapper_y = get_freq_indices(freq_sel_method)
        self.num_split = len(mapper_x)
        mapper_x = [temp_x * (dct_h // 7) for temp_x in mapper_x] 
        mapper_y = [temp_y * (dct_w // 7) for temp_y in mapper_y]
        # make the frequencies in different sizes are identical to a 7x7 frequency space
        # eg, (2,2) in 14x14 is identical to (1,1) in 7x7

        self.dct_layer = MultiSpectralDCTLayer(dct_h, dct_w, mapper_x, mapper_y, channel)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        n,c,h,w = x.shape       # (4,256,64,64)
        x_pooled = x
        if h != self.dct_h or w != self.dct_w:      # dct_h=dct_w=56
            x_pooled = torch.nn.functional.adaptive_avg_pool2d(x, (self.dct_h, self.dct_w))# (4,256,56,56)
            # If you have concerns about one-line-change, don't worry.   :)
            # In the ImageNet models, this line will never be triggered. 
            # This is for compatibility in instance segmentation and object detection.
        y = self.dct_layer(x_pooled)        # y:(4,256)

        y = self.fc(y).view(n, c, 1, 1)         # y:(4,256,1,1)
        return x * y.expand_as(x)       # pytorch中的expand_as:扩张张量的尺寸至括号里张量的尺寸 (4,256,64,64)  注意这里是逐元素相乘,不同于qkv的torch.matmul

class MultiSpectralDCTLayer(nn.Module):
    """
    Generate dct filters
    """
    # MultiSpectralDCTLayer(dct_h, dct_w, mapper_x, mapper_y, channel)
    def __init__(self, height, width, mapper_x, mapper_y, channel):
        super(MultiSpectralDCTLayer, self).__init__()
        
        assert len(mapper_x) == len(mapper_y)
        assert channel % len(mapper_x) == 0

        self.num_freq = len(mapper_x)

        # fixed DCT init
        self.register_buffer('weight', self.get_dct_filter(height, width, mapper_x, mapper_y, channel))
        
        # fixed random init
        # self.register_buffer('weight', torch.rand(channel, height, width))

        # learnable DCT init
        # self.register_parameter('weight', self.get_dct_filter(height, width, mapper_x, mapper_y, channel))
        
        # learnable random init
        # self.register_parameter('weight', torch.rand(channel, height, width))

        # num_freq, h, w

    def forward(self, x):       # (4,256,56,56)
        assert len(x.shape) == 4, 'x must been 4 dimensions, but got ' + str(len(x.shape))
        # n, c, h, w = x.shape

        x = x * self.weight     # weight:(256,56,56)  x:(4,256,56,56)

        result = torch.sum(x, dim=[2,3])        # result:(4,256)
        return result

    def build_filter(self, pos, freq, POS):     # 对应公式中i/j, h/w, H/W   一般是pos即i/j在变
                # self.build_filter(t_x, u_x, tile_size_x)  self.build_filter(t_y, v_y, tile_size_y)
        result = math.cos(math.pi * freq * (pos + 0.5) / POS) / math.sqrt(POS) 
        if freq == 0:
            return result
        else:
            return result * math.sqrt(2)        # 为什么是乘以根号2?
    
    def get_dct_filter(self, tile_size_x, tile_size_y, mapper_x, mapper_y, channel):
                # dct_h(height), dct_w(weight), mapper_x, mapper_y, channel(256,512,1024,2048)
        dct_filter = torch.zeros(channel, tile_size_x, tile_size_y)     # (256,56,56)

        c_part = channel // len(mapper_x)       # c_part = 256/16 = 16

        for i, (u_x, v_y) in enumerate(zip(mapper_x, mapper_y)):
            for t_x in range(tile_size_x):
                for t_y in range(tile_size_y):
                    dct_filter[i * c_part: (i+1)*c_part, t_x, t_y] = self.build_filter(t_x, u_x, tile_size_x) * self.build_filter(t_y, v_y, tile_size_y)
                        
        return dct_filter


class DDLNet(nn.Module):
    def __init__(self, num_class, channel_list=[64, 128, 256, 512], transform_feat=128):
        super(DDLNet, self).__init__()


        c2wh = dict([(64,56), (128,28), (256,14) ,(512,7)])
        self.fca1 = MultiSpectralAttentionLayer(channel_list[0], c2wh[channel_list[0]], c2wh[channel_list[0]],  reduction=16, freq_sel_method = 'top16')
        self.fca2 = MultiSpectralAttentionLayer(channel_list[1], c2wh[channel_list[1]], c2wh[channel_list[1]],  reduction=16, freq_sel_method = 'top16')
        self.fca3 = MultiSpectralAttentionLayer(channel_list[2], c2wh[channel_list[2]], c2wh[channel_list[2]],  reduction=16, freq_sel_method = 'top16')
        self.fca4 = MultiSpectralAttentionLayer(channel_list[3], c2wh[channel_list[3]], c2wh[channel_list[3]],  reduction=16, freq_sel_method = 'top16')

        self.catconv1 = dsconv_3x3(channel_list[0] * 2, out_channel=128)
        self.catconv2 = dsconv_3x3(channel_list[1] * 2, out_channel=128)
        self.catconv3 = dsconv_3x3(channel_list[2] * 2, out_channel=128)
        self.catconv4 = dsconv_3x3(channel_list[3] * 2, out_channel=128)

        self.sff1 = SFF(transform_feat)
        self.sff2 = SFF(transform_feat)
        self.sff3 = SFF(transform_feat)

        self.ssff1 = SSFF()
        self.ssff2 = SSFF()
        self.ssff3 = SSFF()

        self.lightdecoder = LightDecoder(transform_feat, num_class)

        self.catconv = conv_3x3(transform_feat*4, transform_feat)
    
    def forward(self, x):
        featuresA, featuresB = x
        xA1, xA2, xA3, xA4 = featuresA
        xB1, xB2, xB3, xB4 = featuresB

        x1 = self.fca1(xA1)
        x2 = self.fca2(xA2)
        x3 = self.fca3(xA3)
        x4 = self.fca4(xA4)


        x11 = self.fca1(xB1)
        x22 = self.fca2(xB2)
        x33 = self.fca3(xB3)
        x44 = self.fca4(xB4)

        x111 = self.catconv1(torch.cat([x11 - x1, x1], dim=1))
        x222 = self.catconv2(torch.cat([x22 - x2, x2], dim=1))
        x333 = self.catconv3(torch.cat([x33 - x3, x3], dim=1))
        x444 = self.catconv4(torch.cat([x44 - x4, x4], dim=1))

        x1_new = self.ssff1(x444, x111)
        x2_new = self.ssff2(x444, x222)
        x3_new = self.ssff3(x444, x333)

        # print(x1_new.shape)
        # print(x444.shape)
        # print(x111.shape)

        # print(x2_new.shape)
        # print(x444.shape)
        # print(x222.shape)
        x4_new = self.catconv(torch.cat([x444, x1_new, x2_new, x3_new], dim=1))
        # print(x4_new.shape)
        out = self.lightdecoder(x111, x222, x333, x4_new)
        # print(out.shape)
        out = F.interpolate(out, scale_factor=4, mode="bilinear")
        # print(out.shape)
        #return out
        return out


if __name__ == "__main__":
    xa = torch.randn(1, 3, 256, 256)
    xb = torch.randn(1, 3, 256, 256)
    net = DDLNet(2)
    out = net(xa, xb)
    # print(out.shape)
    import thop
    flops, params = thop.profile(net, inputs=(xa,xb,))
    #print(out.shape)
    print(flops/1e9, params/1e6)