File size: 15,572 Bytes
226675b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import torch
import torch.nn as nn
import torch.nn.functional as F
#from torchvision import models
#from base import BaseModel
#from utils.helpers import initialize_weights
from itertools import chain
#from swin_transformer import SwinTransformer
from einops import rearrange
from torch.hub import load_state_dict_from_url

GlobalAvgPool2D = lambda: nn.AdaptiveAvgPool2d(1)

model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
}

class Cross_transformer_backbone(nn.Module):
    def __init__(self, in_channels = 48):
        super(Cross_transformer_backbone, self).__init__()
        
        self.to_key = nn.Linear(in_channels * 2, in_channels, bias=False)
        self.to_value = nn.Linear(in_channels * 2, in_channels, bias=False)
        self.softmax = nn.Softmax(dim=-1)

        self.gamma_cam_lay3 = nn.Parameter(torch.zeros(1))
        self.cam_layer0 = nn.Sequential(
            nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(in_channels),
            nn.ReLU()
        )
        self.cam_layer1 = nn.Sequential(
            nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True)
        )
        self.cam_layer2 = nn.Sequential(
            nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True)
        )
        self.mlp = nn.Sequential(
            nn.Conv2d(in_channels*2, in_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True)
        )
        
    def forward(self, input_feature, features):
        Query_features = input_feature
        Query_features = self.cam_layer0(Query_features)       
        key_features = self.cam_layer1(features)
        value_features = self.cam_layer2(features)
        
        QK = torch.einsum("nlhd,nshd->nlsh", Query_features, key_features)
        softmax_temp = 1. / Query_features.size(3)**.5
        A = torch.softmax(softmax_temp * QK, dim=2)
        queried_values = torch.einsum("nlsh,nshd->nlhd", A, value_features).contiguous()
        message = self.mlp(torch.cat([input_feature, queried_values], dim=1))
        
        return input_feature + message

class Cross_transformer(nn.Module):
    def __init__(self, in_channels = 48):
        super(Cross_transformer, self).__init__()
        self.fa = nn.Linear(in_channels , in_channels, bias=False)
        self.fb = nn.Linear(in_channels, in_channels, bias=False)
        self.fc = nn.Linear(in_channels , in_channels, bias=False)
        self.fd = nn.Linear(in_channels, in_channels, bias=False)
        self.softmax = nn.Softmax(dim=-1)
        self.to_out = nn.Sequential(
            nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True)
        )
        self.gamma_cam_lay3 = nn.Parameter(torch.zeros(1))
        self.fuse = nn.Sequential(
            nn.Conv2d(in_channels * 4, in_channels, kernel_size=1, padding=0),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True)
        )
        
    
    def attention_layer(self, q, k, v, m_batchsize, C, height, width):
        k = k.permute(0, 2, 1)
        energy = torch.bmm(q, k)
        energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy
        attention = self.softmax(energy_new)
        out = torch.bmm(attention, v)
        out = out.view(m_batchsize, C, height, width)
        
        return out
        
        
    def forward(self, input_feature, features):    
        fa = input_feature
        fb = features[0]
        fc = features[1]
        fd = features[2]
        

        m_batchsize, C, height, width = fa.size()
        fa = self.fa(fa.view(m_batchsize, C, -1).permute(0, 2, 1)).permute(0, 2, 1)
        fb = self.fb(fb.view(m_batchsize, C, -1).permute(0, 2, 1)).permute(0, 2, 1)
        fc = self.fc(fc.view(m_batchsize, C, -1).permute(0, 2, 1)).permute(0, 2, 1)
        fd = self.fd(fd.view(m_batchsize, C, -1).permute(0, 2, 1)).permute(0, 2, 1)
        
        
        qkv_1 = self.attention_layer(fa, fa, fa, m_batchsize, C, height, width)
        qkv_2 = self.attention_layer(fa, fb, fb, m_batchsize, C, height, width)  
        qkv_3 = self.attention_layer(fa, fc, fc, m_batchsize, C, height, width)
        qkv_4 = self.attention_layer(fa, fd, fd, m_batchsize, C, height, width)
        
        atten = self.fuse(torch.cat((qkv_1, qkv_2, qkv_3, qkv_4), dim = 1))
              

        out = self.gamma_cam_lay3 * atten + input_feature

        out = self.to_out(out)
        
        return out


class SceneRelation(nn.Module):
    def __init__(self,
                 in_channels,
                 channel_list,
                 out_channels,
                 scale_aware_proj=True):
        super(SceneRelation, self).__init__()
        self.scale_aware_proj = scale_aware_proj

        if scale_aware_proj:
            self.scene_encoder = nn.ModuleList(
                [nn.Sequential(
                    nn.Conv2d(in_channels, out_channels, 1),
                    nn.ReLU(True),
                    nn.Conv2d(out_channels, out_channels, 1),
                ) for _ in range(len(channel_list))]
            )
        else:
            # 2mlp
            self.scene_encoder = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, 1),
                nn.ReLU(True),
                nn.Conv2d(out_channels, out_channels, 1),
            )
        self.content_encoders = nn.ModuleList()
        self.feature_reencoders = nn.ModuleList()
        for c in channel_list:
            self.content_encoders.append(
                nn.Sequential(
                    nn.Conv2d(c, out_channels, 1),
                    nn.BatchNorm2d(out_channels),
                    nn.ReLU(True)
                )
            )
            self.feature_reencoders.append(
                nn.Sequential(
                    nn.Conv2d(c, out_channels, 1),
                    nn.BatchNorm2d(out_channels),
                    nn.ReLU(True)
                )
            )

        self.normalizer = nn.Sigmoid()
        
        

    def forward(self, scene_feature, features: list):
        content_feats = [c_en(p_feat) for c_en, p_feat in zip(self.content_encoders, features)]

        scene_feats = [op(scene_feature) for op in self.scene_encoder]
        relations = [self.normalizer(sf) * cf for sf, cf in
                         zip(scene_feats, content_feats)]

        
        return relations

class PSPModule(nn.Module):
    def __init__(self, in_channels, bin_sizes=[1, 2, 4, 6]):
        super(PSPModule, self).__init__()
        out_channels = in_channels // len(bin_sizes)
        self.stages = nn.ModuleList([self._make_stages(in_channels, out_channels, b_s) 
                                                        for b_s in bin_sizes])
        self.bottleneck = nn.Sequential(
            nn.Conv2d(in_channels+(out_channels * len(bin_sizes)), in_channels, 
                                    kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True),
            nn.Dropout2d(0.1)
        )

    def _make_stages(self, in_channels, out_channels, bin_sz):
        conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        bn = nn.BatchNorm2d(out_channels)
        relu = nn.ReLU(inplace=True)
        return nn.Sequential(conv, bn, relu)
    
    def forward(self, features):
        h, w = features.size()[2], features.size()[3]
        pyramids = [features]

        pyramids.extend([F.interpolate(stage(features), size=(h, w), mode='bilinear', 
                                        align_corners=True) for stage in self.stages])
        output = self.bottleneck(torch.cat(pyramids, dim=1))
        return output

class Change_detection(nn.Module):
    # Implementing only the object path
    def __init__(self, num_classes=2, use_aux=True, fpn_out=48, freeze_bn=False, **_):
        super(Change_detection, self).__init__()

        f_channels = [64, 128, 256, 512]

        # CNN-backbone     
        self.PPN = PSPModule(f_channels[-1])
        
        # Relation-aware
        self.Cross_transformer_backbone_a3 =  Cross_transformer_backbone(in_channels = f_channels[3])
        self.Cross_transformer_backbone_a2 =  Cross_transformer_backbone(in_channels = f_channels[2])
        self.Cross_transformer_backbone_a1 =  Cross_transformer_backbone(in_channels = f_channels[1])
        self.Cross_transformer_backbone_a0 =  Cross_transformer_backbone(in_channels = f_channels[0])
        self.Cross_transformer_backbone_a33 =  Cross_transformer_backbone(in_channels = f_channels[3])
        self.Cross_transformer_backbone_a22 =  Cross_transformer_backbone(in_channels = f_channels[2])
        self.Cross_transformer_backbone_a11 =  Cross_transformer_backbone(in_channels = f_channels[1])
        self.Cross_transformer_backbone_a00 =  Cross_transformer_backbone(in_channels = f_channels[0])
                
        self.Cross_transformer_backbone_b3 =  Cross_transformer_backbone(in_channels = f_channels[3])
        self.Cross_transformer_backbone_b2 =  Cross_transformer_backbone(in_channels = f_channels[2])
        self.Cross_transformer_backbone_b1 =  Cross_transformer_backbone(in_channels = f_channels[1])
        self.Cross_transformer_backbone_b0 =  Cross_transformer_backbone(in_channels = f_channels[0])
        self.Cross_transformer_backbone_b33 =  Cross_transformer_backbone(in_channels = f_channels[3])
        self.Cross_transformer_backbone_b22 =  Cross_transformer_backbone(in_channels = f_channels[2])
        self.Cross_transformer_backbone_b11 =  Cross_transformer_backbone(in_channels = f_channels[1])
        self.Cross_transformer_backbone_b00 =  Cross_transformer_backbone(in_channels = f_channels[0])


        # Scale-aware
        self.sig = nn.Sigmoid()
        self.gap = GlobalAvgPool2D()
        self.sr1 = SceneRelation(in_channels = f_channels[3], channel_list = f_channels, out_channels = f_channels[3], scale_aware_proj=True)
        self.sr2 = SceneRelation(in_channels = f_channels[2], channel_list = f_channels, out_channels = f_channels[2], scale_aware_proj=True)
        self.sr3 = SceneRelation(in_channels = f_channels[1], channel_list = f_channels, out_channels = f_channels[1], scale_aware_proj=True)
        self.sr4 = SceneRelation(in_channels = f_channels[0], channel_list =f_channels, out_channels = f_channels[0], scale_aware_proj=True)


        # Cross transformer
        self.Cross_transformer1 =  Cross_transformer(in_channels = f_channels[3])
        self.Cross_transformer2 =  Cross_transformer(in_channels = f_channels[2])
        self.Cross_transformer3 =  Cross_transformer(in_channels = f_channels[1])
        self.Cross_transformer4 =  Cross_transformer(in_channels = f_channels[0])


        # Generate change map
        self.conv_fusion = nn.Sequential(
            nn.Conv2d(960 , fpn_out, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(fpn_out),
            nn.ReLU(inplace=True)
        )
        
        self.output_fill = nn.Sequential(
            nn.ConvTranspose2d(fpn_out , fpn_out, kernel_size=2, stride = 2, bias=False),
            nn.BatchNorm2d(fpn_out),
            nn.ReLU(inplace=True),
            nn.Conv2d(fpn_out, num_classes, kernel_size=3, padding=1)
        )
        self.active = nn.Sigmoid() 

    def forward(self, x):
        # CNN-backbone
        features1, features2 = x
        
        features, features11, features22= [], [],[]

        # Relation-aware
        for i in range(len(features1)):
            if i == 0:
                features11.append(self.Cross_transformer_backbone_a00(features1[i] , self.Cross_transformer_backbone_a0(features1[i], features2[i])))
                features22.append(self.Cross_transformer_backbone_b00(features2[i], self.Cross_transformer_backbone_b0(features2[i], features1[i])))
            elif i == 1:
                features11.append(self.Cross_transformer_backbone_a11(features1[i] , self.Cross_transformer_backbone_a1(features1[i], features2[i])))
                features22.append(self.Cross_transformer_backbone_b11(features2[i], self.Cross_transformer_backbone_b1(features2[i], features1[i])))
            elif i == 2:    
                features11.append(self.Cross_transformer_backbone_a22(features1[i] , self.Cross_transformer_backbone_a2(features1[i], features2[i])))
                features22.append(self.Cross_transformer_backbone_b22(features2[i], self.Cross_transformer_backbone_b2(features2[i], features1[i])))
            elif i == 3:    
                features11.append(self.Cross_transformer_backbone_a33(features1[i] , self.Cross_transformer_backbone_a3(features1[i], features2[i])))
                features22.append(self.Cross_transformer_backbone_b33(features2[i], self.Cross_transformer_backbone_b3(features2[i], features1[i])))
          
        # The distance between features from two input images.
        for i in range(len(features1)):
            features.append(abs(features11[i] - features22[i])) 
        features[-1] = self.PPN(features[-1])


        # Scale-aware and cross transformer
        H, W = features[0].size(2), features[0].size(3)
        
        c6 = self.gap(features[-1])   
        c7 = self.gap(features[-2])    
        c8 = self.gap(features[-3])    
        c9 = self.gap(features[-4])   
        
        features1, features2, features3, features4 = [], [], [], []
        features1[:] = [F.interpolate(feature, size=(64, 64), mode='nearest') for feature in features[:]]
        list_3 = self.sr1(c6, features1) 
        fe3 = self.Cross_transformer1(list_3[-1], [list_3[-2], list_3[-3], list_3[-4]]) 
        
        features2[:] = [F.interpolate(feature, size=(64, 64), mode='nearest') for feature in features[:]]
        list_2 = self.sr2(c7, features2) 
        fe2 = self.Cross_transformer2(list_2[-2], [list_2[-1], list_2[-3], list_2[-4]]) 
        
        features3[:] = [F.interpolate(feature, size=(64, 64), mode='nearest') for feature in features[:]]
        list_1 = self.sr3(c8, features3) 
        fe1 = self.Cross_transformer3(list_1[-3], [list_1[-1], list_1[-2], list_1[-4]]) 
        
        features4[:] = [F.interpolate(feature, size=(128, 128), mode='nearest') for feature in features[:]]
        list_0 = self.sr4(c9, features4) 
        fe0 = self.Cross_transformer4(list_0[-4], [list_0[-1], list_0[-2], list_0[-3]]) 

        refined_fpn_feat_list = [fe3, fe2, fe1, fe0]
    
        # Upsampling 
        refined_fpn_feat_list[0] = F.interpolate(refined_fpn_feat_list[0], scale_factor=4, mode='nearest')
        refined_fpn_feat_list[1] = F.interpolate(refined_fpn_feat_list[1], scale_factor=4, mode='nearest')
        refined_fpn_feat_list[2] = F.interpolate(refined_fpn_feat_list[2], scale_factor=4, mode='nearest')
        refined_fpn_feat_list[3] = F.interpolate(refined_fpn_feat_list[3], scale_factor=2, mode='nearest')

        # Generate change map
        x = self.conv_fusion(torch.cat((refined_fpn_feat_list), dim=1))
        x = self.output_fill(x)

        return x


if __name__ == '__main__':
    xa = torch.randn(4, 3, 256, 256)
    xb = torch.randn(4, 3, 256, 256)
    net = Change_detection()
    out = net(xa, xb)
    print(out.shape)