File size: 15,344 Bytes
032c113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import torch
import torch.nn as nn
from pytorch_lightning import LightningModule, Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint, TQDMProgressBar
from pytorch_lightning.loggers import TensorBoardLogger
import torchmetrics
from tqdm import tqdm

import prettytable
import numpy as np
import argparse
from rscd.models.build_model import build_model
from rscd.datasets import build_dataloader
from rscd.optimizers import build_optimizer
from rscd.losses import build_loss
from utils.config import Config

from torch.autograd import Variable

import sys
sys.path.append('rscd')

seed_everything(1234, workers=True)

import numpy as np
import os

import time  # 用于计时

def resize_label(label, size):

    label = np.expand_dims(label,axis=0)
    label_resized = np.zeros((1,label.shape[1],size[0],size[1]))
    interp = nn.Upsample(size=(size[0], size[1]),mode='bilinear')

    labelVar = Variable(torch.from_numpy(label).float())  
    label_resized[:, :,:,:] = interp(labelVar).data.numpy()
    label_resized = np.array(label_resized, dtype=np.int32)
    return torch.from_numpy(np.squeeze(label_resized,axis=0)).float()

def get_args():
    parser = argparse.ArgumentParser('description=Change detection of remote sensing images')
    parser.add_argument("-c", "--config", type=str, default="configs/cdlamba.py")
    return parser.parse_args()

class myTrain(LightningModule):
    def __init__(self, cfg, log_dir = None):
        super(myTrain, self).__init__()
        
        self.cfg = cfg
        self.log_dir = log_dir
        self.net = build_model(cfg.model_config)
        self.loss = build_loss(cfg.loss_config)

        self.loss.to('cuda:{}'.format(cfg.gpus[0]))
        
        metric_cfg1 = cfg.metric_cfg1
        metric_cfg2 = cfg.metric_cfg2
        
        self.tr_oa=torchmetrics.Accuracy(**metric_cfg1)
        self.tr_prec = torchmetrics.Precision(**metric_cfg2)
        self.tr_recall = torchmetrics.Recall(**metric_cfg2)
        self.tr_f1 = torchmetrics.F1Score(**metric_cfg2)
        self.tr_iou=torchmetrics.JaccardIndex(**metric_cfg2)

        self.val_oa=torchmetrics.Accuracy(**metric_cfg1)
        self.val_prec = torchmetrics.Precision(**metric_cfg2)
        self.val_recall = torchmetrics.Recall(**metric_cfg2)
        self.val_f1 = torchmetrics.F1Score(**metric_cfg2)
        self.val_iou=torchmetrics.JaccardIndex(**metric_cfg2)

        self.test_oa=torchmetrics.Accuracy(**metric_cfg1)
        self.test_prec = torchmetrics.Precision(**metric_cfg2)
        self.test_recall = torchmetrics.Recall(**metric_cfg2)
        self.test_f1 = torchmetrics.F1Score(**metric_cfg2)
        self.test_iou=torchmetrics.JaccardIndex(**metric_cfg2)

        self.test_max_f1 = [0 for _ in range(10)]

        self.test_loader = build_dataloader(cfg.dataset_config, mode='test')

    def forward(self, x1, x2) :
        pred = self.net(x1, x2)
        return pred

    def configure_optimizers(self):
        optimizer, scheduler = build_optimizer(self.cfg.optimizer_config, self.net)
        return {'optimizer':optimizer,'lr_scheduler':scheduler, 'monitor': self.cfg.monitor_val}

    def train_dataloader(self):
        loader = build_dataloader(self.cfg.dataset_config, mode='train')
        return loader

    def val_dataloader(self):
        loader = build_dataloader(self.cfg.dataset_config, mode='val')
        return loader

    def output(self, metrics, total_metrics, mode, test_idx=0, test_value=None):
        result_table = prettytable.PrettyTable()
        result_table.field_names = ['Class', 'OA', 'Precision', 'Recall', 'F1_Score', 'IOU']

        for i in range(len(metrics[0])):
            item = [i, '--']
            for j in range(len(metrics)):
                item.append(np.round(metrics[j][i].cpu().numpy(), 4))
            result_table.add_row(item)

        total = list(total_metrics.values())
        total = [np.round(v, 4) for v in total]
        total.insert(0, 'total')
        result_table.add_row(total)

        if mode == 'val' or mode == 'test':
            print(mode)
            print(result_table)

        if self.log_dir:
            base_dir = self.log_dir
        else:
            base_dir = os.path.join('work_dirs', cfg.exp_name)

        if mode == 'test':
            if self.cfg.argmax:
                file_name = os.path.join(base_dir, "test_metrics_{}.txt".format(test_idx)) 
                if metrics[2][1] > self.test_max_f1[test_idx]:
                    self.test_max_f1[test_idx] = metrics[2][1]
                    file_name = os.path.join(base_dir, "test_max_metrics_{}.txt".format(test_idx))
            else:
                file_name = os.path.join(base_dir, "test_metrics_{}_{}.txt".format(test_idx, str(test_value))) 
                if metrics[2][1] > self.test_max_f1[test_idx]:
                    self.test_max_f1[test_idx] = metrics[2][1]
                    file_name = os.path.join(base_dir, "test_max_metrics_{}_{}.txt".format(test_idx, '%.1f' % test_value))
        else:
            file_name = os.path.join(base_dir, "train_metrics.txt") 
        f = open(file_name,"a")
        f.write('epoch:{}/{} {}\n'.format(self.current_epoch, self.cfg.epoch, mode))
        f.write(str(result_table)+'\n')
        f.close()

    def training_step(self, batch, batch_idx):
        imgA, imgB, mask = batch[0], batch[1], batch[2]
        preds = self(imgA, imgB)

        if self.cfg.net == 'SARASNet':
            mask = Variable(resize_label(mask.data.cpu().numpy(), \
                                    size=preds.data.cpu().numpy().shape[2:]).to('cuda')).long()
            param = 1  # This parameter is balance precision and recall to get higher F1-score
            preds[:,1,:,:] = preds[:,1,:,:] + param 

        if self.cfg.argmax:
            loss = self.loss(preds, mask)
            pred = preds.argmax(dim=1)
        else:
            if self.cfg.net == 'maskcd':
                loss = self.loss(preds[1], mask)
                pred = preds[0]
                pred = pred > 0.5
                pred.squeeze_(1)
            else:
                pred = preds.squeeze(1)
                loss = self.loss(pred, mask)
                pred = pred > 0.5

        self.tr_oa(pred, mask)
        self.tr_prec(pred, mask)
        self.tr_recall(pred, mask)
        self.tr_f1(pred, mask)
        self.tr_iou(pred, mask)

        self.log('tr_loss', loss, on_step=True,on_epoch=True,prog_bar=True)
        return loss

    def on_train_epoch_end(self):
        metrics = [self.tr_prec.compute(),
                   self.tr_recall.compute(),
                   self.tr_f1.compute(),
                   self.tr_iou.compute()]
        
        log = {'tr_oa': float(self.tr_oa.compute().cpu()),
               'tr_prec': np.mean([item.cpu() for item in metrics[0]]),
               'tr_recall': np.mean([item.cpu() for item in metrics[1]]),
               'tr_f1': np.mean([item.cpu() for item in metrics[2]]),
               'tr_miou': np.mean([item.cpu() for item in metrics[3]])}
        
        self.output(metrics, log, 'train')
        
        for key, value in zip(log.keys(), log.values()):
            self.log(key, value, on_step=False,on_epoch=True,prog_bar=True)
        self.log('tr_change_f1', metrics[2][1], on_step=False,on_epoch=True,prog_bar=True)

        self.tr_oa.reset()
        self.tr_prec.reset()
        self.tr_recall.reset()
        self.tr_f1.reset()
        self.tr_iou.reset()

    def validation_step(self, batch, batch_idx):
        imgA, imgB, mask = batch[0], batch[1], batch[2]
        preds = self(imgA, imgB)

        if self.cfg.net == 'SARASNet':
            mask = Variable(resize_label(mask.data.cpu().numpy(), \
                                    size=preds.data.cpu().numpy().shape[2:]).to('cuda')).long()
            param = 1  # This parameter is balance precision and recall to get higher F1-score
            preds[:,1,:,:] = preds[:,1,:,:] + param 

        if self.cfg.argmax:
            loss = self.loss(preds, mask)
            pred = preds.argmax(dim=1)
        else:
            if self.cfg.net == 'maskcd':
                loss = self.loss(preds[1], mask)
                pred = preds[0]
                pred = pred > 0.5
                pred.squeeze_(1)
            else:
                pred = preds.squeeze(1)
                loss = self.loss(pred, mask)
                pred = pred > 0.5

        self.val_oa(pred, mask)
        self.val_prec(pred, mask)
        self.val_recall(pred, mask)
        self.val_f1(pred, mask)
        self.val_iou(pred, mask)

        self.log('val_loss', loss, on_step=True,on_epoch=True,prog_bar=True)
        return loss

    def on_validation_epoch_end(self):
        metrics = [self.val_prec.compute(),
                   self.val_recall.compute(),
                   self.val_f1.compute(),
                   self.val_iou.compute()]

        log = {'val_oa': float(self.val_oa.compute().cpu()),
               'val_prec': np.mean([item.cpu() for item in metrics[0]]),
               'val_recall': np.mean([item.cpu() for item in metrics[1]]),
               'val_f1': np.mean([item.cpu() for item in metrics[2]]),
               'val_miou': np.mean([item.cpu() for item in metrics[3]])}
        
        self.output(metrics, log, 'val')
        
        for key, value in zip(log.keys(), log.values()):
            self.log(key, value, on_step=False,on_epoch=True,prog_bar=True)
        self.log('val_change_f1', metrics[2][1], on_step=False,on_epoch=True,prog_bar=True)

        self.val_oa.reset()
        self.val_prec.reset()
        self.val_recall.reset()
        self.val_f1.reset()
        self.val_iou.reset()

        for idx in range(0, len(self.cfg.monitor_test), 1):
            if self.cfg.argmax:
                self.log(self.cfg.monitor_test[idx], self.test(idx), on_step=False,on_epoch=True,prog_bar=True)
            else:
                t = 0.2 + 0.1 * idx
                self.log(self.cfg.monitor_test[idx], self.test(idx, t), on_step=False,on_epoch=True,prog_bar=True)

    def test(self, idx, value = None):
        for input in tqdm(self.test_loader):
            raw_predictions, mask_test = self(input[0].cuda(cfg.gpus[0]), input[1].cuda(cfg.gpus[0])), input[2].cuda(cfg.gpus[0])

            if self.cfg.net == 'SARASNet':
                mask_test = Variable(resize_label(mask_test.data.cpu().numpy(), \
                                        size=raw_predictions.data.cpu().numpy().shape[2:]).to('cuda')).long()
                param = 1  # This parameter is balance precision and recall to get higher F1-score
                raw_predictions[:,1,:,:] = raw_predictions[:,1,:,:] + param 

            if self.cfg.argmax:
                pred_test = raw_predictions.argmax(dim=1)
            else:
                if self.cfg.net == 'maskcd':
                    raw_prediction = raw_predictions[0]
                    pred_test = raw_prediction > value
                    pred_test.squeeze_(1)
                else:
                    pred_test = raw_predictions.squeeze(1)
                    pred_test = pred_test > 0.5

            self.test_oa(pred_test, mask_test)
            self.test_iou(pred_test, mask_test)
            self.test_prec(pred_test, mask_test)
            self.test_f1(pred_test, mask_test)
            self.test_recall(pred_test, mask_test)

        metrics_test = [self.test_prec.compute(),
                   self.test_recall.compute(),
                   self.test_f1.compute(),
                   self.test_iou.compute()]
        
        log = {'test_oa': float(self.test_oa.compute().cpu()),
            'test_prec': np.mean([item.cpu() for item in metrics_test[0]]),
            'test_recall': np.mean([item.cpu() for item in metrics_test[1]]),
            'test_f1': np.mean([item.cpu() for item in metrics_test[2]]),
            'test_miou': np.mean([item.cpu() for item in metrics_test[3]])}
        
        self.output(metrics_test, log, 'test', idx, value)
        
        self.test_oa.reset()
        self.test_prec.reset()
        self.test_recall.reset()
        self.test_f1.reset()
        self.test_iou.reset()

        return metrics_test[2][1]

if __name__ == "__main__":
    args = get_args()
    cfg = Config.fromfile(args.config)
    logger = TensorBoardLogger(save_dir = "work_dirs",
                               sub_dir = 'log',
                               name = cfg.exp_name,
                               default_hp_metric = False)
    
    log_dir = os.path.dirname(logger.log_dir)

    model = myTrain(cfg, log_dir)
    # —— 在这里插入“推理 FPS 测试”功能 —— #
    device = torch.device(f'cuda:{cfg.gpus[0]}' if torch.cuda.is_available() else 'cpu')
    model = model.to(device)
    model.eval()

    # 从验证集 dataloader 里取一个 batch
    val_loader = model.val_dataloader()
    batch_iter = iter(val_loader)
    try:
        batch = next(batch_iter)
        imgA_batch = batch[0]
        imgB_batch = batch[1]
    except StopIteration:
        raise RuntimeError("验证集 dataloader 为空,请检查数据集配置。")

    # 将输入搬到同一个设备
    imgA_batch = imgA_batch.to(device)
    imgB_batch = imgB_batch.to(device)

    # 热身推理 10 次
    with torch.no_grad():
        for _ in range(10):
            _ = model(imgA_batch, imgB_batch)

    # 正式计时 N 次推理
    N = 100
    torch.cuda.synchronize(device)
    start_time = time.time()
    with torch.no_grad():
        for _ in range(N):
            _ = model(imgA_batch, imgB_batch)
    torch.cuda.synchronize(device)
    elapsed = time.time() - start_time
    fps = N / elapsed
    print(f"[推理 FPS 测试] 输入分辨率 = {imgA_batch.shape[2]}×{imgA_batch.shape[3]},"
          f"Batch Size = {imgA_batch.shape[0]},推理 {N} 次总耗时:{elapsed:.4f} 秒,FPS = {fps:.2f}")
    # —— 插入结束 —— #
    
    pbar = TQDMProgressBar(refresh_rate=1)
    lr_monitor=LearningRateMonitor(logging_interval = cfg.logging_interval)
    callbacks = [pbar, lr_monitor]

    ckpt_cb = ModelCheckpoint(dirpath = f'{log_dir}/ckpts/val',
                            filename = '{' + cfg.monitor_val + ':.4f}' + '-{epoch:d}',
                            monitor = cfg.monitor_val,
                            mode = 'max',
                            save_top_k = cfg.save_top_k,
                            save_last=True)
    callbacks.append(ckpt_cb)

    for m_test in cfg.monitor_test:
        ckpt_cb = ModelCheckpoint(dirpath = f'{log_dir}/ckpts/test/{m_test}',
                                filename = '{' + m_test + ':.4f}' + '-{epoch:d}',
                                monitor = m_test,
                                mode = 'max',
                                save_top_k = cfg.save_top_k,
                                save_last=True)
        callbacks.append(ckpt_cb)
    
    trainer = Trainer(max_epochs = cfg.epoch,
                    #   precision='16-mixed',
                      callbacks = callbacks,
                      logger = logger,
                      enable_model_summary = True,
                      accelerator = 'auto',
                      devices = cfg.gpus,
                      num_sanity_val_steps = 2,
                      benchmark = True)
    
    trainer.fit(model, ckpt_path=cfg.resume_ckpt_path)