|
|
import os |
|
|
import time |
|
|
import math |
|
|
import copy |
|
|
from functools import partial |
|
|
from typing import Optional, Callable, Any |
|
|
from collections import OrderedDict |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import torch.utils.checkpoint as checkpoint |
|
|
from einops import rearrange, repeat |
|
|
from timm.models.layers import DropPath, trunc_normal_ |
|
|
from fvcore.nn import FlopCountAnalysis, flop_count_str, flop_count, parameter_count |
|
|
DropPath.__repr__ = lambda self: f"timm.DropPath({self.drop_prob})" |
|
|
|
|
|
|
|
|
from rscd.models.backbones.csm_triton import CrossScanTriton, CrossMergeTriton, CrossScanTriton1b1 |
|
|
|
|
|
|
|
|
class CrossScan(torch.autograd.Function): |
|
|
@staticmethod |
|
|
def forward(ctx, x: torch.Tensor): |
|
|
B, C, H, W = x.shape |
|
|
ctx.shape = (B, C, H, W) |
|
|
xs = x.new_empty((B, 4, C, H * W)) |
|
|
xs[:, 0] = x.flatten(2, 3) |
|
|
xs[:, 1] = x.transpose(dim0=2, dim1=3).flatten(2, 3) |
|
|
xs[:, 2:4] = torch.flip(xs[:, 0:2], dims=[-1]) |
|
|
return xs |
|
|
|
|
|
@staticmethod |
|
|
def backward(ctx, ys: torch.Tensor): |
|
|
|
|
|
B, C, H, W = ctx.shape |
|
|
L = H * W |
|
|
ys = ys[:, 0:2] + ys[:, 2:4].flip(dims=[-1]).view(B, 2, -1, L) |
|
|
y = ys[:, 0] + ys[:, 1].view(B, -1, W, H).transpose(dim0=2, dim1=3).contiguous().view(B, -1, L) |
|
|
return y.view(B, -1, H, W) |
|
|
|
|
|
|
|
|
class CrossMerge(torch.autograd.Function): |
|
|
@staticmethod |
|
|
def forward(ctx, ys: torch.Tensor): |
|
|
B, K, D, H, W = ys.shape |
|
|
ctx.shape = (H, W) |
|
|
ys = ys.view(B, K, D, -1) |
|
|
ys = ys[:, 0:2] + ys[:, 2:4].flip(dims=[-1]).view(B, 2, D, -1) |
|
|
y = ys[:, 0] + ys[:, 1].view(B, -1, W, H).transpose(dim0=2, dim1=3).contiguous().view(B, D, -1) |
|
|
return y |
|
|
|
|
|
@staticmethod |
|
|
def backward(ctx, x: torch.Tensor): |
|
|
|
|
|
|
|
|
H, W = ctx.shape |
|
|
B, C, L = x.shape |
|
|
xs = x.new_empty((B, 4, C, L)) |
|
|
xs[:, 0] = x |
|
|
xs[:, 1] = x.view(B, C, H, W).transpose(dim0=2, dim1=3).flatten(2, 3) |
|
|
xs[:, 2:4] = torch.flip(xs[:, 0:2], dims=[-1]) |
|
|
xs = xs.view(B, 4, C, H, W) |
|
|
return xs |
|
|
|
|
|
|
|
|
|
|
|
class CrossScan_Ab_2direction(torch.autograd.Function): |
|
|
@staticmethod |
|
|
def forward(ctx, x: torch.Tensor): |
|
|
B, C, H, W = x.shape |
|
|
ctx.shape = (B, C, H, W) |
|
|
x = x.view(B, 1, C, H * W).repeat(1, 2, 1, 1) |
|
|
x = torch.cat([x, x.flip(dims=[-1])], dim=1) |
|
|
return x |
|
|
|
|
|
@staticmethod |
|
|
def backward(ctx, ys: torch.Tensor): |
|
|
B, C, H, W = ctx.shape |
|
|
L = H * W |
|
|
ys = ys[:, 0:2] + ys[:, 2:4].flip(dims=[-1]).view(B, 2, -1, L) |
|
|
return ys.sum(1).view(B, -1, H, W) |
|
|
|
|
|
|
|
|
class CrossMerge_Ab_2direction(torch.autograd.Function): |
|
|
@staticmethod |
|
|
def forward(ctx, ys: torch.Tensor): |
|
|
B, K, D, H, W = ys.shape |
|
|
ctx.shape = (H, W) |
|
|
ys = ys.view(B, K, D, -1) |
|
|
ys = ys[:, 0:2] + ys[:, 2:4].flip(dims=[-1]).view(B, 2, D, -1) |
|
|
return ys.contiguous().sum(1) |
|
|
|
|
|
@staticmethod |
|
|
def backward(ctx, x: torch.Tensor): |
|
|
H, W = ctx.shape |
|
|
B, C, L = x.shape |
|
|
x = x.view(B, 1, C, H * W).repeat(1, 2, 1, 1) |
|
|
x = torch.cat([x, x.flip(dims=[-1])], dim=1) |
|
|
return x.view(B, 4, C, H, W) |
|
|
|
|
|
|
|
|
class CrossScan_Ab_1direction(torch.autograd.Function): |
|
|
@staticmethod |
|
|
def forward(ctx, x: torch.Tensor): |
|
|
B, C, H, W = x.shape |
|
|
ctx.shape = (B, C, H, W) |
|
|
x = x.view(B, 1, C, H * W).repeat(1, 4, 1, 1) |
|
|
return x |
|
|
|
|
|
|
|
|
@staticmethod |
|
|
def backward(ctx, ys: torch.Tensor): |
|
|
B, C, H, W = ctx.shape |
|
|
return ys.view(B, 4, -1, H, W).sum(1) |
|
|
|
|
|
|
|
|
class CrossMerge_Ab_1direction(torch.autograd.Function): |
|
|
@staticmethod |
|
|
def forward(ctx, ys: torch.Tensor): |
|
|
B, K, C, H, W = ys.shape |
|
|
ctx.shape = (B, C, H, W) |
|
|
return ys.view(B, 4, -1, H * W).sum(1) |
|
|
|
|
|
@staticmethod |
|
|
def backward(ctx, x: torch.Tensor): |
|
|
B, C, H, W = ctx.shape |
|
|
return x.view(B, 1, C, H, W).repeat(1, 4, 1, 1, 1) |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
import selective_scan_cuda_oflex |
|
|
except Exception as e: |
|
|
... |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
import selective_scan_cuda_core |
|
|
except Exception as e: |
|
|
... |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
import selective_scan_cuda |
|
|
except Exception as e: |
|
|
... |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_nan_inf(tag: str, x: torch.Tensor, enable=True): |
|
|
if enable: |
|
|
if torch.isinf(x).any() or torch.isnan(x).any(): |
|
|
print(tag, torch.isinf(x).any(), torch.isnan(x).any(), flush=True) |
|
|
import pdb; pdb.set_trace() |
|
|
|
|
|
|
|
|
|
|
|
def flops_selective_scan_fn(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_complex=False): |
|
|
""" |
|
|
u: r(B D L) |
|
|
delta: r(B D L) |
|
|
A: r(D N) |
|
|
B: r(B N L) |
|
|
C: r(B N L) |
|
|
D: r(D) |
|
|
z: r(B D L) |
|
|
delta_bias: r(D), fp32 |
|
|
|
|
|
ignores: |
|
|
[.float(), +, .softplus, .shape, new_zeros, repeat, stack, to(dtype), silu] |
|
|
""" |
|
|
assert not with_complex |
|
|
|
|
|
flops = 9 * B * L * D * N |
|
|
if with_D: |
|
|
flops += B * D * L |
|
|
if with_Z: |
|
|
flops += B * D * L |
|
|
return flops |
|
|
|
|
|
|
|
|
def flops_selective_scan_ref(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_Group=True, with_complex=False): |
|
|
""" |
|
|
u: r(B D L) |
|
|
delta: r(B D L) |
|
|
A: r(D N) |
|
|
B: r(B N L) |
|
|
C: r(B N L) |
|
|
D: r(D) |
|
|
z: r(B D L) |
|
|
delta_bias: r(D), fp32 |
|
|
|
|
|
ignores: |
|
|
[.float(), +, .softplus, .shape, new_zeros, repeat, stack, to(dtype), silu] |
|
|
""" |
|
|
import numpy as np |
|
|
|
|
|
|
|
|
def get_flops_einsum(input_shapes, equation): |
|
|
np_arrs = [np.zeros(s) for s in input_shapes] |
|
|
optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1] |
|
|
for line in optim.split("\n"): |
|
|
if "optimized flop" in line.lower(): |
|
|
|
|
|
flop = float(np.floor(float(line.split(":")[-1]) / 2)) |
|
|
return flop |
|
|
|
|
|
|
|
|
assert not with_complex |
|
|
|
|
|
flops = 0 |
|
|
|
|
|
flops += get_flops_einsum([[B, D, L], [D, N]], "bdl,dn->bdln") |
|
|
if with_Group: |
|
|
flops += get_flops_einsum([[B, D, L], [B, N, L], [B, D, L]], "bdl,bnl,bdl->bdln") |
|
|
else: |
|
|
flops += get_flops_einsum([[B, D, L], [B, D, N, L], [B, D, L]], "bdl,bdnl,bdl->bdln") |
|
|
|
|
|
in_for_flops = B * D * N |
|
|
if with_Group: |
|
|
in_for_flops += get_flops_einsum([[B, D, N], [B, D, N]], "bdn,bdn->bd") |
|
|
else: |
|
|
in_for_flops += get_flops_einsum([[B, D, N], [B, N]], "bdn,bn->bd") |
|
|
flops += L * in_for_flops |
|
|
if with_D: |
|
|
flops += B * D * L |
|
|
if with_Z: |
|
|
flops += B * D * L |
|
|
return flops |
|
|
|
|
|
|
|
|
def print_jit_input_names(inputs): |
|
|
print("input params: ", end=" ", flush=True) |
|
|
try: |
|
|
for i in range(10): |
|
|
print(inputs[i].debugName(), end=" ", flush=True) |
|
|
except Exception as e: |
|
|
pass |
|
|
print("", flush=True) |
|
|
|
|
|
|
|
|
|
|
|
class SelectiveScanMamba(torch.autograd.Function): |
|
|
@staticmethod |
|
|
@torch.cuda.amp.custom_fwd |
|
|
def forward(ctx, u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=False, nrows=1, backnrows=1, oflex=True): |
|
|
ctx.delta_softplus = delta_softplus |
|
|
out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, None, delta_bias, delta_softplus) |
|
|
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x) |
|
|
return out |
|
|
|
|
|
@staticmethod |
|
|
@torch.cuda.amp.custom_bwd |
|
|
def backward(ctx, dout, *args): |
|
|
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors |
|
|
if dout.stride(-1) != 1: |
|
|
dout = dout.contiguous() |
|
|
|
|
|
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd( |
|
|
u, delta, A, B, C, D, None, delta_bias, dout, x, None, None, ctx.delta_softplus, |
|
|
False |
|
|
) |
|
|
return (du, ddelta, dA, dB, dC, dD, ddelta_bias, None, None, None, None) |
|
|
|
|
|
|
|
|
class SelectiveScanCore(torch.autograd.Function): |
|
|
@staticmethod |
|
|
@torch.cuda.amp.custom_fwd |
|
|
def forward(ctx, u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=False, nrows=1, backnrows=1, oflex=True): |
|
|
ctx.delta_softplus = delta_softplus |
|
|
out, x, *rest = selective_scan_cuda_core.fwd(u, delta, A, B, C, D, delta_bias, delta_softplus, 1) |
|
|
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x) |
|
|
return out |
|
|
|
|
|
@staticmethod |
|
|
@torch.cuda.amp.custom_bwd |
|
|
def backward(ctx, dout, *args): |
|
|
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors |
|
|
if dout.stride(-1) != 1: |
|
|
dout = dout.contiguous() |
|
|
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda_core.bwd( |
|
|
u, delta, A, B, C, D, delta_bias, dout, x, ctx.delta_softplus, 1 |
|
|
) |
|
|
return (du, ddelta, dA, dB, dC, dD, ddelta_bias, None, None, None, None) |
|
|
|
|
|
|
|
|
class SelectiveScanOflex(torch.autograd.Function): |
|
|
@staticmethod |
|
|
@torch.cuda.amp.custom_fwd |
|
|
def forward(ctx, u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=False, nrows=1, backnrows=1, oflex=True): |
|
|
ctx.delta_softplus = delta_softplus |
|
|
out, x, *rest = selective_scan_cuda_oflex.fwd(u, delta, A, B, C, D, delta_bias, delta_softplus, 1, oflex) |
|
|
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x) |
|
|
return out |
|
|
|
|
|
@staticmethod |
|
|
@torch.cuda.amp.custom_bwd |
|
|
def backward(ctx, dout, *args): |
|
|
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors |
|
|
if dout.stride(-1) != 1: |
|
|
dout = dout.contiguous() |
|
|
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda_oflex.bwd( |
|
|
u, delta, A, B, C, D, delta_bias, dout, x, ctx.delta_softplus, 1 |
|
|
) |
|
|
return (du, ddelta, dA, dB, dC, dD, ddelta_bias, None, None, None, None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cross_selective_scan( |
|
|
x: torch.Tensor=None, |
|
|
x_proj_weight: torch.Tensor=None, |
|
|
x_proj_bias: torch.Tensor=None, |
|
|
dt_projs_weight: torch.Tensor=None, |
|
|
dt_projs_bias: torch.Tensor=None, |
|
|
A_logs: torch.Tensor=None, |
|
|
Ds: torch.Tensor=None, |
|
|
delta_softplus = True, |
|
|
out_norm: torch.nn.Module=None, |
|
|
out_norm_shape="v0", |
|
|
channel_first=False, |
|
|
|
|
|
to_dtype=True, |
|
|
force_fp32=False, |
|
|
|
|
|
nrows = -1, |
|
|
backnrows = -1, |
|
|
ssoflex=True, |
|
|
|
|
|
SelectiveScan=None, |
|
|
CrossScan=CrossScan, |
|
|
CrossMerge=CrossMerge, |
|
|
no_einsum=False, |
|
|
dt_low_rank=True, |
|
|
): |
|
|
|
|
|
|
|
|
B, D, H, W = x.shape |
|
|
D, N = A_logs.shape |
|
|
K, D, R = dt_projs_weight.shape |
|
|
L = H * W |
|
|
|
|
|
if nrows == 0: |
|
|
if D % 4 == 0: |
|
|
nrows = 4 |
|
|
elif D % 3 == 0: |
|
|
nrows = 3 |
|
|
elif D % 2 == 0: |
|
|
nrows = 2 |
|
|
else: |
|
|
nrows = 1 |
|
|
|
|
|
if backnrows == 0: |
|
|
if D % 4 == 0: |
|
|
backnrows = 4 |
|
|
elif D % 3 == 0: |
|
|
backnrows = 3 |
|
|
elif D % 2 == 0: |
|
|
backnrows = 2 |
|
|
else: |
|
|
backnrows = 1 |
|
|
|
|
|
def selective_scan(u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=True): |
|
|
return SelectiveScan.apply(u, delta, A, B, C, D, delta_bias, delta_softplus, nrows, backnrows, ssoflex) |
|
|
|
|
|
if (not dt_low_rank): |
|
|
x_dbl = F.conv1d(x.view(B, -1, L), x_proj_weight.view(-1, D, 1), bias=(x_proj_bias.view(-1) if x_proj_bias is not None else None), groups=K) |
|
|
dts, Bs, Cs = torch.split(x_dbl.view(B, -1, L), [D, 4 * N, 4 * N], dim=1) |
|
|
xs = CrossScan.apply(x) |
|
|
dts = CrossScan.apply(dts) |
|
|
elif no_einsum: |
|
|
xs = CrossScan.apply(x) |
|
|
x_dbl = F.conv1d(xs.view(B, -1, L), x_proj_weight.view(-1, D, 1), bias=(x_proj_bias.view(-1) if x_proj_bias is not None else None), groups=K) |
|
|
dts, Bs, Cs = torch.split(x_dbl.view(B, K, -1, L), [R, N, N], dim=2) |
|
|
dts = F.conv1d(dts.contiguous().view(B, -1, L), dt_projs_weight.view(K * D, -1, 1), groups=K) |
|
|
else: |
|
|
xs = CrossScan.apply(x) |
|
|
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, x_proj_weight) |
|
|
if x_proj_bias is not None: |
|
|
x_dbl = x_dbl + x_proj_bias.view(1, K, -1, 1) |
|
|
dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=2) |
|
|
dts = torch.einsum("b k r l, k d r -> b k d l", dts, dt_projs_weight) |
|
|
|
|
|
xs = xs.view(B, -1, L) |
|
|
dts = dts.contiguous().view(B, -1, L) |
|
|
As = -torch.exp(A_logs.to(torch.float)) |
|
|
Bs = Bs.contiguous().view(B, K, N, L) |
|
|
Cs = Cs.contiguous().view(B, K, N, L) |
|
|
Ds = Ds.to(torch.float) |
|
|
delta_bias = dt_projs_bias.view(-1).to(torch.float) |
|
|
|
|
|
if force_fp32: |
|
|
xs = xs.to(torch.float) |
|
|
dts = dts.to(torch.float) |
|
|
Bs = Bs.to(torch.float) |
|
|
Cs = Cs.to(torch.float) |
|
|
|
|
|
ys: torch.Tensor = selective_scan( |
|
|
xs, dts, As, Bs, Cs, Ds, delta_bias, delta_softplus |
|
|
).view(B, K, -1, H, W) |
|
|
|
|
|
y: torch.Tensor = CrossMerge.apply(ys) |
|
|
|
|
|
if channel_first: |
|
|
y = y.view(B, -1, H, W) |
|
|
if out_norm_shape in ["v1"]: |
|
|
y = out_norm(y) |
|
|
else: |
|
|
y = out_norm(y.permute(0, 2, 3, 1)) |
|
|
y = y.permute(0, 3, 1, 2) |
|
|
return (y.to(x.dtype) if to_dtype else y) |
|
|
|
|
|
if out_norm_shape in ["v1"]: |
|
|
y = out_norm(y.view(B, -1, H, W)).permute(0, 2, 3, 1) |
|
|
else: |
|
|
y = y.transpose(dim0=1, dim1=2).contiguous() |
|
|
y = out_norm(y).view(B, H, W, -1) |
|
|
|
|
|
return (y.to(x.dtype) if to_dtype else y) |
|
|
|
|
|
|
|
|
def selective_scan_flop_jit(inputs, outputs): |
|
|
print_jit_input_names(inputs) |
|
|
B, D, L = inputs[0].type().sizes() |
|
|
N = inputs[2].type().sizes()[1] |
|
|
flops = flops_selective_scan_fn(B=B, L=L, D=D, N=N, with_D=True, with_Z=False) |
|
|
return flops |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Linear2d(nn.Linear): |
|
|
def forward(self, x: torch.Tensor): |
|
|
|
|
|
return F.conv2d(x, self.weight[:, :, None, None], self.bias) |
|
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): |
|
|
state_dict[prefix + "weight"] = state_dict[prefix + "weight"].view(self.weight.shape) |
|
|
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) |
|
|
|
|
|
|
|
|
class LayerNorm2d(nn.LayerNorm): |
|
|
def forward(self, x: torch.Tensor): |
|
|
x = x.permute(0, 2, 3, 1) |
|
|
x = nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
|
x = x.permute(0, 3, 1, 2) |
|
|
return x |
|
|
|
|
|
|
|
|
class PatchMerging2D(nn.Module): |
|
|
def __init__(self, dim, out_dim=-1, norm_layer=nn.LayerNorm): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.reduction = nn.Linear(4 * dim, (2 * dim) if out_dim < 0 else out_dim, bias=False) |
|
|
self.norm = norm_layer(4 * dim) |
|
|
|
|
|
@staticmethod |
|
|
def _patch_merging_pad(x: torch.Tensor): |
|
|
H, W, _ = x.shape[-3:] |
|
|
if (W % 2 != 0) or (H % 2 != 0): |
|
|
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) |
|
|
x0 = x[..., 0::2, 0::2, :] |
|
|
x1 = x[..., 1::2, 0::2, :] |
|
|
x2 = x[..., 0::2, 1::2, :] |
|
|
x3 = x[..., 1::2, 1::2, :] |
|
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
|
return x |
|
|
|
|
|
def forward(self, x): |
|
|
x = self._patch_merging_pad(x) |
|
|
x = self.norm(x) |
|
|
x = self.reduction(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class Permute(nn.Module): |
|
|
def __init__(self, *args): |
|
|
super().__init__() |
|
|
self.args = args |
|
|
|
|
|
def forward(self, x: torch.Tensor): |
|
|
return x.permute(*self.args) |
|
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.,channels_first=False): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
|
|
|
Linear = Linear2d if channels_first else nn.Linear |
|
|
self.fc1 = Linear(in_features, hidden_features) |
|
|
self.act = act_layer() |
|
|
self.fc2 = Linear(hidden_features, out_features) |
|
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.act(x) |
|
|
x = self.drop(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class gMlp(nn.Module): |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.,channels_first=False): |
|
|
super().__init__() |
|
|
self.channel_first = channels_first |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
|
|
|
Linear = Linear2d if channels_first else nn.Linear |
|
|
self.fc1 = Linear(in_features, 2 * hidden_features) |
|
|
self.act = act_layer() |
|
|
self.fc2 = Linear(hidden_features, out_features) |
|
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def forward(self, x: torch.Tensor): |
|
|
x = self.fc1(x) |
|
|
x, z = x.chunk(2, dim=(1 if self.channel_first else -1)) |
|
|
x = self.fc2(x * self.act(z)) |
|
|
x = self.drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SS2D(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
|
|
|
d_model=96, |
|
|
d_state=16, |
|
|
ssm_ratio=2.0, |
|
|
dt_rank="auto", |
|
|
act_layer=nn.SiLU, |
|
|
|
|
|
d_conv=3, |
|
|
conv_bias=True, |
|
|
|
|
|
dropout=0.0, |
|
|
bias=False, |
|
|
|
|
|
dt_min=0.001, |
|
|
dt_max=0.1, |
|
|
dt_init="random", |
|
|
dt_scale=1.0, |
|
|
dt_init_floor=1e-4, |
|
|
initialize="v0", |
|
|
|
|
|
forward_type="v2", |
|
|
channel_first=False, |
|
|
|
|
|
**kwargs, |
|
|
): |
|
|
kwargs.update( |
|
|
d_model=d_model, d_state=d_state, ssm_ratio=ssm_ratio, dt_rank=dt_rank, |
|
|
act_layer=act_layer, d_conv=d_conv, conv_bias=conv_bias, dropout=dropout, bias=bias, |
|
|
dt_min=dt_min, dt_max=dt_max, dt_init=dt_init, dt_scale=dt_scale, dt_init_floor=dt_init_floor, |
|
|
initialize=initialize, forward_type=forward_type, channel_first=channel_first, |
|
|
) |
|
|
|
|
|
if forward_type.startswith("v0"): |
|
|
self.__initv0__(seq=("seq" in forward_type), **kwargs) |
|
|
return |
|
|
elif forward_type.startswith("xv"): |
|
|
self.__initxv__(**kwargs) |
|
|
return |
|
|
else: |
|
|
self.__initv2__(**kwargs) |
|
|
return |
|
|
|
|
|
|
|
|
def __initv0__( |
|
|
self, |
|
|
|
|
|
d_model=96, |
|
|
d_state=16, |
|
|
ssm_ratio=2.0, |
|
|
dt_rank="auto", |
|
|
|
|
|
dropout=0.0, |
|
|
|
|
|
seq=False, |
|
|
force_fp32=True, |
|
|
**kwargs, |
|
|
): |
|
|
if "channel_first" in kwargs: |
|
|
assert not kwargs["channel_first"] |
|
|
act_layer = nn.SiLU |
|
|
dt_min = 0.001 |
|
|
dt_max = 0.1 |
|
|
dt_init = "random" |
|
|
dt_scale = 1.0 |
|
|
dt_init_floor = 1e-4 |
|
|
bias = False |
|
|
conv_bias = True |
|
|
d_conv = 3 |
|
|
k_group = 4 |
|
|
factory_kwargs = {"device": None, "dtype": None} |
|
|
super().__init__() |
|
|
d_inner = int(ssm_ratio * d_model) |
|
|
dt_rank = math.ceil(d_model / 16) if dt_rank == "auto" else dt_rank |
|
|
|
|
|
self.forward = self.forwardv0 |
|
|
if seq: |
|
|
self.forward = partial(self.forwardv0, seq=True) |
|
|
if not force_fp32: |
|
|
self.forward = partial(self.forwardv0, force_fp32=False) |
|
|
|
|
|
|
|
|
self.in_proj = nn.Linear(d_model, d_inner * 2, bias=bias, **factory_kwargs) |
|
|
self.act: nn.Module = act_layer() |
|
|
self.conv2d = nn.Conv2d( |
|
|
in_channels=d_inner, |
|
|
out_channels=d_inner, |
|
|
groups=d_inner, |
|
|
bias=conv_bias, |
|
|
kernel_size=d_conv, |
|
|
padding=(d_conv - 1) // 2, |
|
|
**factory_kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
self.x_proj = [ |
|
|
nn.Linear(d_inner, (dt_rank + d_state * 2), bias=False, **factory_kwargs) |
|
|
for _ in range(k_group) |
|
|
] |
|
|
self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) |
|
|
del self.x_proj |
|
|
|
|
|
|
|
|
self.dt_projs = [ |
|
|
self.dt_init(dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs) |
|
|
for _ in range(k_group) |
|
|
] |
|
|
self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) |
|
|
self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) |
|
|
del self.dt_projs |
|
|
|
|
|
|
|
|
self.A_logs = self.A_log_init(d_state, d_inner, copies=k_group, merge=True) |
|
|
self.Ds = self.D_init(d_inner, copies=k_group, merge=True) |
|
|
|
|
|
|
|
|
self.out_norm = nn.LayerNorm(d_inner) |
|
|
self.out_proj = nn.Linear(d_inner, d_model, bias=bias, **factory_kwargs) |
|
|
self.dropout = nn.Dropout(dropout) if dropout > 0. else nn.Identity() |
|
|
|
|
|
def __initv2__( |
|
|
self, |
|
|
|
|
|
d_model=96, |
|
|
d_state=16, |
|
|
ssm_ratio=2.0, |
|
|
dt_rank="auto", |
|
|
act_layer=nn.SiLU, |
|
|
|
|
|
d_conv=3, |
|
|
conv_bias=True, |
|
|
|
|
|
dropout=0.0, |
|
|
bias=False, |
|
|
|
|
|
dt_min=0.001, |
|
|
dt_max=0.1, |
|
|
dt_init="random", |
|
|
dt_scale=1.0, |
|
|
dt_init_floor=1e-4, |
|
|
initialize="v0", |
|
|
|
|
|
forward_type="v2", |
|
|
channel_first=False, |
|
|
|
|
|
**kwargs, |
|
|
): |
|
|
factory_kwargs = {"device": None, "dtype": None} |
|
|
super().__init__() |
|
|
d_inner = int(ssm_ratio * d_model) |
|
|
dt_rank = math.ceil(d_model / 16) if dt_rank == "auto" else dt_rank |
|
|
self.d_conv = d_conv |
|
|
self.channel_first = channel_first |
|
|
Linear = Linear2d if channel_first else nn.Linear |
|
|
self.forward = self.forwardv2 |
|
|
|
|
|
|
|
|
def checkpostfix(tag, value): |
|
|
ret = value[-len(tag):] == tag |
|
|
if ret: |
|
|
value = value[:-len(tag)] |
|
|
return ret, value |
|
|
|
|
|
self.disable_force32, forward_type = checkpostfix("no32", forward_type) |
|
|
self.disable_z, forward_type = checkpostfix("noz", forward_type) |
|
|
self.disable_z_act, forward_type = checkpostfix("nozact", forward_type) |
|
|
|
|
|
|
|
|
self.out_norm_shape = "v1" |
|
|
if forward_type[-len("none"):] == "none": |
|
|
forward_type = forward_type[:-len("none")] |
|
|
self.out_norm = nn.Identity() |
|
|
elif forward_type[-len("dwconv3"):] == "dwconv3": |
|
|
forward_type = forward_type[:-len("dwconv3")] |
|
|
self.out_norm = nn.Conv2d(d_inner, d_inner, kernel_size=3, padding=1, groups=d_inner, bias=False) |
|
|
elif forward_type[-len("softmax"):] == "softmax": |
|
|
forward_type = forward_type[:-len("softmax")] |
|
|
class SoftmaxSpatial(nn.Softmax): |
|
|
def forward(self, x: torch.Tensor): |
|
|
B, C, H, W = x.shape |
|
|
return super().forward(x.view(B, C, -1)).view(B, C, H, W) |
|
|
self.out_norm = SoftmaxSpatial(dim=-1) |
|
|
elif forward_type[-len("sigmoid"):] == "sigmoid": |
|
|
forward_type = forward_type[:-len("sigmoid")] |
|
|
self.out_norm = nn.Sigmoid() |
|
|
elif channel_first: |
|
|
self.out_norm = LayerNorm2d(d_inner) |
|
|
else: |
|
|
self.out_norm_shape = "v0" |
|
|
self.out_norm = nn.LayerNorm(d_inner) |
|
|
|
|
|
|
|
|
FORWARD_TYPES = dict( |
|
|
v01=partial(self.forward_corev2, force_fp32=(not self.disable_force32), SelectiveScan=SelectiveScanMamba), |
|
|
v2=partial(self.forward_corev2, force_fp32=(not self.disable_force32), SelectiveScan=SelectiveScanCore), |
|
|
v3=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex), |
|
|
v31d=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, CrossScan=CrossScan_Ab_1direction, CrossMerge=CrossMerge_Ab_1direction, |
|
|
), |
|
|
v32d=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, CrossScan=CrossScan_Ab_2direction, CrossMerge=CrossMerge_Ab_2direction, |
|
|
), |
|
|
v4=partial(self.forward_corev2, force_fp32=False, SelectiveScan=SelectiveScanOflex, no_einsum=True, CrossScan=CrossScanTriton, CrossMerge=CrossMergeTriton), |
|
|
|
|
|
v1=partial(self.forward_corev2, force_fp32=True, SelectiveScan=SelectiveScanOflex), |
|
|
) |
|
|
self.forward_core = FORWARD_TYPES.get(forward_type, None) |
|
|
k_group = 4 |
|
|
|
|
|
|
|
|
d_proj = d_inner if self.disable_z else (d_inner * 2) |
|
|
self.in_proj = Linear(d_model, d_proj, bias=bias, **factory_kwargs) |
|
|
self.act: nn.Module = act_layer() |
|
|
|
|
|
|
|
|
if d_conv > 1: |
|
|
self.conv2d = nn.Conv2d( |
|
|
in_channels=d_inner, |
|
|
out_channels=d_inner, |
|
|
groups=d_inner, |
|
|
bias=conv_bias, |
|
|
kernel_size=d_conv, |
|
|
padding=(d_conv - 1) // 2, |
|
|
**factory_kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
self.x_proj = [ |
|
|
nn.Linear(d_inner, (dt_rank + d_state * 2), bias=False, **factory_kwargs) |
|
|
for _ in range(k_group) |
|
|
] |
|
|
self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) |
|
|
del self.x_proj |
|
|
|
|
|
|
|
|
self.out_proj = Linear(d_inner, d_model, bias=bias, **factory_kwargs) |
|
|
self.dropout = nn.Dropout(dropout) if dropout > 0. else nn.Identity() |
|
|
|
|
|
if initialize in ["v0"]: |
|
|
|
|
|
self.dt_projs = [ |
|
|
self.dt_init(dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs) |
|
|
for _ in range(k_group) |
|
|
] |
|
|
self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) |
|
|
self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) |
|
|
del self.dt_projs |
|
|
|
|
|
|
|
|
self.A_logs = self.A_log_init(d_state, d_inner, copies=k_group, merge=True) |
|
|
self.Ds = self.D_init(d_inner, copies=k_group, merge=True) |
|
|
elif initialize in ["v1"]: |
|
|
|
|
|
self.Ds = nn.Parameter(torch.ones((k_group * d_inner))) |
|
|
self.A_logs = nn.Parameter(torch.randn((k_group * d_inner, d_state))) |
|
|
self.dt_projs_weight = nn.Parameter(torch.randn((k_group, d_inner, dt_rank))) |
|
|
self.dt_projs_bias = nn.Parameter(torch.randn((k_group, d_inner))) |
|
|
elif initialize in ["v2"]: |
|
|
|
|
|
self.Ds = nn.Parameter(torch.ones((k_group * d_inner))) |
|
|
self.A_logs = nn.Parameter(torch.zeros((k_group * d_inner, d_state))) |
|
|
self.dt_projs_weight = nn.Parameter(0.1 * torch.rand((k_group, d_inner, dt_rank))) |
|
|
self.dt_projs_bias = nn.Parameter(0.1 * torch.rand((k_group, d_inner))) |
|
|
|
|
|
def __initxv__( |
|
|
self, |
|
|
|
|
|
d_model=96, |
|
|
d_state=16, |
|
|
ssm_ratio=2.0, |
|
|
dt_rank="auto", |
|
|
act_layer=nn.SiLU, |
|
|
|
|
|
d_conv=3, |
|
|
conv_bias=True, |
|
|
|
|
|
dropout=0.0, |
|
|
bias=False, |
|
|
|
|
|
dt_min=0.001, |
|
|
dt_max=0.1, |
|
|
dt_init="random", |
|
|
dt_scale=1.0, |
|
|
dt_init_floor=1e-4, |
|
|
initialize="v0", |
|
|
|
|
|
forward_type="v2", |
|
|
channel_first=False, |
|
|
|
|
|
**kwargs, |
|
|
): |
|
|
factory_kwargs = {"device": None, "dtype": None} |
|
|
super().__init__() |
|
|
d_inner = int(ssm_ratio * d_model) |
|
|
dt_rank = math.ceil(d_model / 16) if dt_rank == "auto" else dt_rank |
|
|
self.d_conv = d_conv |
|
|
self.channel_first = channel_first |
|
|
self.d_state = d_state |
|
|
self.dt_rank = dt_rank |
|
|
self.d_inner = d_inner |
|
|
Linear = Linear2d if channel_first else nn.Linear |
|
|
self.forward = self.forwardxv |
|
|
|
|
|
|
|
|
def checkpostfix(tag, value): |
|
|
ret = value[-len(tag):] == tag |
|
|
if ret: |
|
|
value = value[:-len(tag)] |
|
|
return ret, value |
|
|
|
|
|
self.disable_force32, forward_type = checkpostfix("no32", forward_type) |
|
|
|
|
|
|
|
|
self.out_norm_shape = "v1" |
|
|
if forward_type[-len("none"):] == "none": |
|
|
forward_type = forward_type[:-len("none")] |
|
|
self.out_norm = nn.Identity() |
|
|
elif forward_type[-len("dwconv3"):] == "dwconv3": |
|
|
forward_type = forward_type[:-len("dwconv3")] |
|
|
self.out_norm = nn.Conv2d(d_inner, d_inner, kernel_size=3, padding=1, groups=d_inner, bias=False) |
|
|
elif forward_type[-len("softmax"):] == "softmax": |
|
|
forward_type = forward_type[:-len("softmax")] |
|
|
class SoftmaxSpatial(nn.Softmax): |
|
|
def forward(self, x: torch.Tensor): |
|
|
B, C, H, W = x.shape |
|
|
return super().forward(x.view(B, C, -1)).view(B, C, H, W) |
|
|
self.out_norm = SoftmaxSpatial(dim=-1) |
|
|
elif forward_type[-len("sigmoid"):] == "sigmoid": |
|
|
forward_type = forward_type[:-len("sigmoid")] |
|
|
self.out_norm = nn.Sigmoid() |
|
|
elif channel_first: |
|
|
self.out_norm = LayerNorm2d(d_inner) |
|
|
else: |
|
|
self.out_norm_shape = "v0" |
|
|
self.out_norm = nn.LayerNorm(d_inner) |
|
|
|
|
|
k_group = 4 |
|
|
|
|
|
self.out_act: nn.Module = nn.Identity() |
|
|
|
|
|
if False: |
|
|
|
|
|
if forward_type.startswith("xv1"): |
|
|
self.in_proj = nn.Conv2d(d_model, d_inner + dt_rank + 8 * d_state, 1, bias=bias, **factory_kwargs) |
|
|
|
|
|
if forward_type.startswith("xv2"): |
|
|
self.in_proj = nn.Conv2d(d_model, d_inner + d_inner + 8 * d_state, 1, bias=bias, **factory_kwargs) |
|
|
self.forward = partial(self.forwardxv, mode="xv2") |
|
|
del self.dt_projs_weight |
|
|
|
|
|
if forward_type.startswith("xv3"): |
|
|
self.forward = partial(self.forwardxv, mode="xv3") |
|
|
self.in_proj = nn.Conv2d(d_model, d_inner + 4 * dt_rank + 8 * d_state, 1, bias=bias, **factory_kwargs) |
|
|
|
|
|
if forward_type.startswith("xv4"): |
|
|
self.forward = partial(self.forwardxv, mode="xv3") |
|
|
self.in_proj = nn.Conv2d(d_model, d_inner + 4 * dt_rank + 8 * d_state, 1, bias=bias, **factory_kwargs) |
|
|
self.out_act = nn.GELU() |
|
|
|
|
|
if forward_type.startswith("xv5"): |
|
|
self.in_proj = nn.Conv2d(d_model, d_inner + d_inner + 8 * d_state, 1, bias=bias, **factory_kwargs) |
|
|
self.forward = partial(self.forwardxv, mode="xv2") |
|
|
del self.dt_projs_weight |
|
|
self.out_act = nn.GELU() |
|
|
|
|
|
if forward_type.startswith("xv6"): |
|
|
self.forward = partial(self.forwardxv, mode="xv1") |
|
|
self.in_proj = nn.Conv2d(d_model, d_inner + dt_rank + 8 * d_state, 1, bias=bias, **factory_kwargs) |
|
|
self.out_act = nn.GELU() |
|
|
|
|
|
|
|
|
if forward_type.startswith("xv61"): |
|
|
self.forward = partial(self.forwardxv, mode="xv1") |
|
|
self.in_proj = Linear2d(d_model, d_inner + dt_rank + 8 * d_state, bias=bias, **factory_kwargs) |
|
|
self.out_act = nn.GELU() |
|
|
|
|
|
if forward_type.startswith("xv7"): |
|
|
self.forward = partial(self.forwardxv, mode="xv1", omul=True) |
|
|
self.in_proj = Linear2d(d_model, d_inner + dt_rank + 8 * d_state, bias=bias, **factory_kwargs) |
|
|
self.out_act = nn.GELU() |
|
|
|
|
|
if True: |
|
|
omul, forward_type = checkpostfix("mul", forward_type) |
|
|
if omul: |
|
|
self.omul = nn.Identity() |
|
|
oact, forward_type = checkpostfix("act", forward_type) |
|
|
self.out_act = nn.GELU() if oact else nn.Identity() |
|
|
|
|
|
if forward_type.startswith("xv1a"): |
|
|
self.forward = partial(self.forwardxv, mode="xv1a", omul=omul) |
|
|
self.in_proj = Linear2d(d_model, d_inner + dt_rank + 8 * d_state, bias=bias, **factory_kwargs) |
|
|
|
|
|
if forward_type.startswith("xv2a"): |
|
|
self.forward = partial(self.forwardxv, mode="xv2a", omul=omul) |
|
|
self.in_proj = Linear2d(d_model, d_inner + d_inner + 8 * d_state,bias=bias, **factory_kwargs) |
|
|
|
|
|
if forward_type.startswith("xv3a"): |
|
|
self.forward = partial(self.forwardxv, mode="xv3a", omul=omul) |
|
|
self.in_proj = Linear2d(d_model, d_inner + 4 * dt_rank + 8 * d_state,bias=bias, **factory_kwargs) |
|
|
|
|
|
|
|
|
if d_conv > 1: |
|
|
self.conv2d = nn.Conv2d( |
|
|
in_channels=d_model, |
|
|
out_channels=d_model, |
|
|
groups=d_model, |
|
|
bias=conv_bias, |
|
|
kernel_size=d_conv, |
|
|
padding=(d_conv - 1) // 2, |
|
|
**factory_kwargs, |
|
|
) |
|
|
self.act: nn.Module = act_layer() |
|
|
|
|
|
|
|
|
self.out_proj = Linear(d_inner, d_model, bias=bias, **factory_kwargs) |
|
|
self.dropout = nn.Dropout(dropout) if dropout > 0. else nn.Identity() |
|
|
|
|
|
if initialize in ["v0"]: |
|
|
|
|
|
self.dt_projs = [ |
|
|
self.dt_init(dt_rank, d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs) |
|
|
for _ in range(k_group) |
|
|
] |
|
|
self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) |
|
|
self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) |
|
|
del self.dt_projs |
|
|
|
|
|
|
|
|
self.A_logs = self.A_log_init(d_state, d_inner, copies=k_group, merge=True) |
|
|
self.Ds = self.D_init(d_inner, copies=k_group, merge=True) |
|
|
elif initialize in ["v1"]: |
|
|
|
|
|
self.Ds = nn.Parameter(torch.ones((k_group * d_inner))) |
|
|
self.A_logs = nn.Parameter(torch.randn((k_group * d_inner, d_state))) |
|
|
self.dt_projs_weight = nn.Parameter(torch.randn((k_group, d_inner, dt_rank))) |
|
|
self.dt_projs_bias = nn.Parameter(torch.randn((k_group, d_inner))) |
|
|
elif initialize in ["v2"]: |
|
|
|
|
|
self.Ds = nn.Parameter(torch.ones((k_group * d_inner))) |
|
|
self.A_logs = nn.Parameter(torch.zeros((k_group * d_inner, d_state))) |
|
|
self.dt_projs_weight = nn.Parameter(0.1 * torch.rand((k_group, d_inner, dt_rank))) |
|
|
self.dt_projs_bias = nn.Parameter(0.1 * torch.rand((k_group, d_inner))) |
|
|
|
|
|
if forward_type.startswith("xv2"): |
|
|
del self.dt_projs_weight |
|
|
|
|
|
@staticmethod |
|
|
def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4, **factory_kwargs): |
|
|
dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs) |
|
|
|
|
|
|
|
|
dt_init_std = dt_rank**-0.5 * dt_scale |
|
|
if dt_init == "constant": |
|
|
nn.init.constant_(dt_proj.weight, dt_init_std) |
|
|
elif dt_init == "random": |
|
|
nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
dt = torch.exp( |
|
|
torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min)) |
|
|
+ math.log(dt_min) |
|
|
).clamp(min=dt_init_floor) |
|
|
|
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
|
with torch.no_grad(): |
|
|
dt_proj.bias.copy_(inv_dt) |
|
|
|
|
|
|
|
|
|
|
|
return dt_proj |
|
|
|
|
|
@staticmethod |
|
|
def A_log_init(d_state, d_inner, copies=-1, device=None, merge=True): |
|
|
|
|
|
A = repeat( |
|
|
torch.arange(1, d_state + 1, dtype=torch.float32, device=device), |
|
|
"n -> d n", |
|
|
d=d_inner, |
|
|
).contiguous() |
|
|
A_log = torch.log(A) |
|
|
if copies > 0: |
|
|
A_log = repeat(A_log, "d n -> r d n", r=copies) |
|
|
if merge: |
|
|
A_log = A_log.flatten(0, 1) |
|
|
A_log = nn.Parameter(A_log) |
|
|
A_log._no_weight_decay = True |
|
|
return A_log |
|
|
|
|
|
@staticmethod |
|
|
def D_init(d_inner, copies=-1, device=None, merge=True): |
|
|
|
|
|
D = torch.ones(d_inner, device=device) |
|
|
if copies > 0: |
|
|
D = repeat(D, "n1 -> r n1", r=copies) |
|
|
if merge: |
|
|
D = D.flatten(0, 1) |
|
|
D = nn.Parameter(D) |
|
|
D._no_weight_decay = True |
|
|
return D |
|
|
|
|
|
|
|
|
def forwardv0(self, x: torch.Tensor, SelectiveScan = SelectiveScanMamba, seq=False, force_fp32=True, **kwargs): |
|
|
x = self.in_proj(x) |
|
|
x, z = x.chunk(2, dim=-1) |
|
|
z = self.act(z) |
|
|
x = x.permute(0, 3, 1, 2).contiguous() |
|
|
x = self.conv2d(x) |
|
|
x = self.act(x) |
|
|
|
|
|
def selective_scan(u, delta, A, B, C, D=None, delta_bias=None, delta_softplus=True, nrows=1): |
|
|
return SelectiveScan.apply(u, delta, A, B, C, D, delta_bias, delta_softplus, nrows, False) |
|
|
|
|
|
B, D, H, W = x.shape |
|
|
D, N = self.A_logs.shape |
|
|
K, D, R = self.dt_projs_weight.shape |
|
|
L = H * W |
|
|
|
|
|
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L) |
|
|
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) |
|
|
|
|
|
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs, self.x_proj_weight) |
|
|
|
|
|
dts, Bs, Cs = torch.split(x_dbl, [R, N, N], dim=2) |
|
|
dts = torch.einsum("b k r l, k d r -> b k d l", dts, self.dt_projs_weight) |
|
|
|
|
|
xs = xs.view(B, -1, L) |
|
|
dts = dts.contiguous().view(B, -1, L) |
|
|
Bs = Bs.contiguous() |
|
|
Cs = Cs.contiguous() |
|
|
|
|
|
As = -torch.exp(self.A_logs.float()) |
|
|
Ds = self.Ds.float() |
|
|
dt_projs_bias = self.dt_projs_bias.float().view(-1) |
|
|
|
|
|
|
|
|
|
|
|
to_fp32 = lambda *args: (_a.to(torch.float32) for _a in args) |
|
|
|
|
|
if force_fp32: |
|
|
xs, dts, Bs, Cs = to_fp32(xs, dts, Bs, Cs) |
|
|
|
|
|
if seq: |
|
|
out_y = [] |
|
|
for i in range(4): |
|
|
yi = selective_scan( |
|
|
xs.view(B, K, -1, L)[:, i], dts.view(B, K, -1, L)[:, i], |
|
|
As.view(K, -1, N)[i], Bs[:, i].unsqueeze(1), Cs[:, i].unsqueeze(1), Ds.view(K, -1)[i], |
|
|
delta_bias=dt_projs_bias.view(K, -1)[i], |
|
|
delta_softplus=True, |
|
|
).view(B, -1, L) |
|
|
out_y.append(yi) |
|
|
out_y = torch.stack(out_y, dim=1) |
|
|
else: |
|
|
out_y = selective_scan( |
|
|
xs, dts, |
|
|
As, Bs, Cs, Ds, |
|
|
delta_bias=dt_projs_bias, |
|
|
delta_softplus=True, |
|
|
).view(B, K, -1, L) |
|
|
assert out_y.dtype == torch.float |
|
|
|
|
|
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L) |
|
|
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L) |
|
|
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L) |
|
|
y = out_y[:, 0] + inv_y[:, 0] + wh_y + invwh_y |
|
|
|
|
|
y = y.transpose(dim0=1, dim1=2).contiguous() |
|
|
y = self.out_norm(y).view(B, H, W, -1) |
|
|
|
|
|
y = y * z |
|
|
out = self.dropout(self.out_proj(y)) |
|
|
return out |
|
|
|
|
|
def forward_corev2(self, x: torch.Tensor, cross_selective_scan=cross_selective_scan, **kwargs): |
|
|
x_proj_weight = self.x_proj_weight |
|
|
dt_projs_weight = self.dt_projs_weight |
|
|
dt_projs_bias = self.dt_projs_bias |
|
|
A_logs = self.A_logs |
|
|
Ds = self.Ds |
|
|
out_norm = getattr(self, "out_norm", None) |
|
|
out_norm_shape = getattr(self, "out_norm_shape", "v0") |
|
|
|
|
|
return cross_selective_scan( |
|
|
x, x_proj_weight, None, dt_projs_weight, dt_projs_bias, |
|
|
A_logs, Ds, delta_softplus=True, |
|
|
out_norm=out_norm, |
|
|
channel_first=self.channel_first, |
|
|
out_norm_shape=out_norm_shape, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
def forwardv2(self, x: torch.Tensor, **kwargs): |
|
|
with_dconv = (self.d_conv > 1) |
|
|
x = self.in_proj(x) |
|
|
if not self.disable_z: |
|
|
x, z = x.chunk(2, dim=(1 if self.channel_first else -1)) |
|
|
if not self.disable_z_act: |
|
|
z = self.act(z) |
|
|
|
|
|
if not self.channel_first: |
|
|
x = x.permute(0, 3, 1, 2).contiguous() |
|
|
if with_dconv: |
|
|
x = self.conv2d(x) |
|
|
x = self.act(x) |
|
|
|
|
|
y = self.forward_core(x) |
|
|
|
|
|
if not self.disable_z: |
|
|
y = y * z |
|
|
out = self.dropout(self.out_proj(y)) |
|
|
return out |
|
|
|
|
|
def forwardxv(self, x: torch.Tensor, mode="xv1a", omul=False, **kwargs): |
|
|
B, C, H, W = x.shape |
|
|
if not self.channel_first: |
|
|
B, H, W, C = x.shape |
|
|
L = H * W |
|
|
K = 4 |
|
|
dt_projs_weight = getattr(self, "dt_projs_weight", None) |
|
|
A_logs = self.A_logs |
|
|
dt_projs_bias = self.dt_projs_bias |
|
|
force_fp32 = False |
|
|
delta_softplus = True |
|
|
out_norm_shape = getattr(self, "out_norm_shape", "v0") |
|
|
out_norm = self.out_norm |
|
|
to_dtype = True |
|
|
Ds = self.Ds |
|
|
|
|
|
to_fp32 = lambda *args: (_a.to(torch.float32) for _a in args) |
|
|
|
|
|
def selective_scan(u, delta, A, B, C, D, delta_bias, delta_softplus): |
|
|
return SelectiveScanOflex.apply(u, delta, A, B, C, D, delta_bias, delta_softplus, 1, 1, True) |
|
|
|
|
|
if not self.channel_first: |
|
|
x = x.permute(0, 3, 1, 2).contiguous() |
|
|
|
|
|
if self.d_conv > 1: |
|
|
x = self.conv2d(x) |
|
|
x = self.act(x) |
|
|
x = self.in_proj(x) |
|
|
|
|
|
if mode in ["xv1", "xv2", "xv3", "xv7"]: |
|
|
print(f"ERROR: MODE {mode} will be deleted in the future, use {mode}a instead.") |
|
|
|
|
|
if mode in ["xv1"]: |
|
|
_us, dts, Bs, Cs = x.split([self.d_inner, self.dt_rank, 4 * self.d_state, 4 * self.d_state], dim=1) |
|
|
us = CrossScanTriton.apply(_us.contiguous()).view(B, -1, L) |
|
|
dts = CrossScanTriton.apply(dts.contiguous()).view(B, -1, L) |
|
|
dts = F.conv1d(dts, dt_projs_weight.view(K * self.d_inner, self.dt_rank, 1), None, groups=K).contiguous().view(B, -1, L) |
|
|
elif mode in ["xv2"]: |
|
|
_us, dts, Bs, Cs = x.split([self.d_inner, self.d_inner, 4 * self.d_state, 4 * self.d_state], dim=1) |
|
|
us = CrossScanTriton.apply(_us.contiguous()).view(B, -1, L) |
|
|
dts = CrossScanTriton.apply(dts).contiguous().view(B, -1, L) |
|
|
elif mode in ["xv3"]: |
|
|
_us, dts, Bs, Cs = x.split([self.d_inner, 4 * self.dt_rank, 4 * self.d_state, 4 * self.d_state], dim=1) |
|
|
us = CrossScanTriton.apply(_us.contiguous()).view(B, -1, L) |
|
|
dts = CrossScanTriton1b1.apply(dts.contiguous().view(B, K, -1, H, W)) |
|
|
dts = F.conv1d(dts.view(B, -1, L), dt_projs_weight.view(K * self.d_inner, self.dt_rank, 1), None, groups=K).contiguous().view(B, -1, L) |
|
|
else: |
|
|
... |
|
|
|
|
|
if mode in ["xv1a"]: |
|
|
us, dts, Bs, Cs = x.split([self.d_inner, self.dt_rank, 4 * self.d_state, 4 * self.d_state], dim=1) |
|
|
_us = us |
|
|
us = CrossScanTriton.apply(us.contiguous()).view(B, 4, -1, L) |
|
|
dts = CrossScanTriton.apply(dts.contiguous()).view(B, 4, -1, L) |
|
|
Bs = CrossScanTriton1b1.apply(Bs.view(B, 4, -1, H, W).contiguous()).view(B, 4, -1, L) |
|
|
Cs = CrossScanTriton1b1.apply(Cs.view(B, 4, -1, H, W).contiguous()).view(B, 4, -1, L) |
|
|
dts = F.conv1d(dts.contiguous().view(B, -1, L), dt_projs_weight.view(K * self.d_inner, self.dt_rank, 1), None, groups=K) |
|
|
us, dts = us.contiguous().view(B, -1, L), dts |
|
|
_us = us.view(B, K, -1, H, W)[:, 0, :, :, :] |
|
|
elif mode in ["xv2a"]: |
|
|
us, dts, Bs, Cs = x.split([self.d_inner, self.d_inner, 4 * self.d_state, 4 * self.d_state], dim=1) |
|
|
_us = us |
|
|
us = CrossScanTriton.apply(us.contiguous()).view(B, 4, -1, L) |
|
|
dts = CrossScanTriton.apply(dts.contiguous()).view(B, 4, -1, L) |
|
|
Bs = CrossScanTriton1b1.apply(Bs.view(B, 4, -1, H, W).contiguous()).view(B, 4, -1, L) |
|
|
Cs = CrossScanTriton1b1.apply(Cs.view(B, 4, -1, H, W).contiguous()).view(B, 4, -1, L) |
|
|
us, dts = us.contiguous().view(B, -1, L), dts.contiguous().view(B, -1, L) |
|
|
elif mode in ["xv3a"]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
us, dts, Bs, Cs = x.split([self.d_inner, 4 * self.dt_rank, 4 * self.d_state, 4 * self.d_state], dim=1) |
|
|
_us = us |
|
|
us = CrossScanTriton.apply(us.contiguous()).view(B, 4, -1, L) |
|
|
dts = CrossScanTriton1b1.apply(dts.view(B, 4, -1, H, W).contiguous()).view(B, 4, -1, L) |
|
|
Bs = CrossScanTriton1b1.apply(Bs.view(B, 4, -1, H, W).contiguous()).view(B, 4, -1, L) |
|
|
Cs = CrossScanTriton1b1.apply(Cs.view(B, 4, -1, H, W).contiguous()).view(B, 4, -1, L) |
|
|
dts = F.conv1d(dts.contiguous().view(B, -1, L), dt_projs_weight.view(K * self.d_inner, self.dt_rank, 1), None, groups=K) |
|
|
us, dts = us.contiguous().view(B, -1, L), dts |
|
|
else: |
|
|
... |
|
|
|
|
|
Bs, Cs = Bs.view(B, K, -1, L).contiguous(), Cs.view(B, K, -1, L).contiguous() |
|
|
|
|
|
As = -torch.exp(A_logs.to(torch.float)) |
|
|
Ds = Ds.to(torch.float) |
|
|
delta_bias = dt_projs_bias.view(-1).to(torch.float) |
|
|
|
|
|
if force_fp32: |
|
|
us, dts, Bs, Cs = to_fp32(us, dts, Bs, Cs) |
|
|
|
|
|
ys: torch.Tensor = selective_scan( |
|
|
us, dts, As, Bs, Cs, Ds, delta_bias, delta_softplus |
|
|
).view(B, K, -1, H, W) |
|
|
|
|
|
y: torch.Tensor = CrossMergeTriton.apply(ys) |
|
|
y = y.view(B, -1, H, W) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (not self.channel_first) or (out_norm_shape in ["v0"]): |
|
|
y = out_norm(y.permute(0, 2, 3, 1)) |
|
|
if self.channel_first: |
|
|
y = y.permute(0, 3, 1, 2) |
|
|
else: |
|
|
y = out_norm(y) |
|
|
|
|
|
y = (y.to(x.dtype) if to_dtype else y) |
|
|
y = self.out_act(y) |
|
|
if omul: |
|
|
y = y * (_us.permute(0, 2, 3, 1) if not self.channel_first else _us) |
|
|
out = self.dropout(self.out_proj(y)) |
|
|
return out |
|
|
|
|
|
|
|
|
class VSSBlock(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
hidden_dim: int = 0, |
|
|
drop_path: float = 0, |
|
|
norm_layer: nn.Module = nn.LayerNorm, |
|
|
channel_first=False, |
|
|
|
|
|
ssm_d_state: int = 16, |
|
|
ssm_ratio=2.0, |
|
|
ssm_dt_rank: Any = "auto", |
|
|
ssm_act_layer=nn.SiLU, |
|
|
ssm_conv: int = 3, |
|
|
ssm_conv_bias=True, |
|
|
ssm_drop_rate: float = 0, |
|
|
ssm_init="v0", |
|
|
forward_type="v2", |
|
|
|
|
|
mlp_ratio=4.0, |
|
|
mlp_act_layer=nn.GELU, |
|
|
mlp_drop_rate: float = 0.0, |
|
|
gmlp=False, |
|
|
|
|
|
use_checkpoint: bool = False, |
|
|
post_norm: bool = False, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__() |
|
|
self.ssm_branch = ssm_ratio > 0 |
|
|
self.mlp_branch = mlp_ratio > 0 |
|
|
self.use_checkpoint = use_checkpoint |
|
|
self.post_norm = post_norm |
|
|
|
|
|
if self.ssm_branch: |
|
|
self.norm = norm_layer(hidden_dim) |
|
|
self.op = SS2D( |
|
|
d_model=hidden_dim, |
|
|
d_state=ssm_d_state, |
|
|
ssm_ratio=ssm_ratio, |
|
|
dt_rank=ssm_dt_rank, |
|
|
act_layer=ssm_act_layer, |
|
|
|
|
|
d_conv=ssm_conv, |
|
|
conv_bias=ssm_conv_bias, |
|
|
|
|
|
dropout=ssm_drop_rate, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
initialize=ssm_init, |
|
|
|
|
|
forward_type=forward_type, |
|
|
channel_first=channel_first, |
|
|
) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) |
|
|
|
|
|
if self.mlp_branch: |
|
|
_MLP = Mlp if not gmlp else gMlp |
|
|
self.norm2 = norm_layer(hidden_dim) |
|
|
mlp_hidden_dim = int(hidden_dim * mlp_ratio) |
|
|
self.mlp = _MLP(in_features=hidden_dim, hidden_features=mlp_hidden_dim, act_layer=mlp_act_layer, drop=mlp_drop_rate, channels_first=channel_first) |
|
|
|
|
|
def _forward(self, input: torch.Tensor): |
|
|
if self.ssm_branch: |
|
|
if self.post_norm: |
|
|
x = input + self.drop_path(self.norm(self.op(input))) |
|
|
else: |
|
|
x = input + self.drop_path(self.op(self.norm(input))) |
|
|
if self.mlp_branch: |
|
|
if self.post_norm: |
|
|
x = x + self.drop_path(self.norm2(self.mlp(x))) |
|
|
else: |
|
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
return x |
|
|
|
|
|
def forward(self, input: torch.Tensor): |
|
|
if self.use_checkpoint: |
|
|
return checkpoint.checkpoint(self._forward, input) |
|
|
else: |
|
|
return self._forward(input) |
|
|
|
|
|
|
|
|
class VSSM(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
patch_size=4, |
|
|
in_chans=3, |
|
|
num_classes=1000, |
|
|
depths=[2, 2, 9, 2], |
|
|
dims=[96, 192, 384, 768], |
|
|
|
|
|
ssm_d_state=16, |
|
|
ssm_ratio=2.0, |
|
|
ssm_dt_rank="auto", |
|
|
ssm_act_layer="silu", |
|
|
ssm_conv=3, |
|
|
ssm_conv_bias=True, |
|
|
ssm_drop_rate=0.0, |
|
|
ssm_init="v0", |
|
|
forward_type="v2", |
|
|
|
|
|
mlp_ratio=4.0, |
|
|
mlp_act_layer="gelu", |
|
|
mlp_drop_rate=0.0, |
|
|
gmlp=False, |
|
|
|
|
|
drop_path_rate=0.1, |
|
|
patch_norm=True, |
|
|
norm_layer="LN", |
|
|
downsample_version: str = "v2", |
|
|
patchembed_version: str = "v1", |
|
|
use_checkpoint=False, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__() |
|
|
self.channel_first = (norm_layer.lower() in ["bn", "ln2d"]) |
|
|
self.num_classes = num_classes |
|
|
self.num_layers = len(depths) |
|
|
if isinstance(dims, int): |
|
|
dims = [int(dims * 2 ** i_layer) for i_layer in range(self.num_layers)] |
|
|
self.num_features = dims[-1] |
|
|
self.dims = dims |
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
_NORMLAYERS = dict( |
|
|
ln=nn.LayerNorm, |
|
|
ln2d=LayerNorm2d, |
|
|
bn=nn.BatchNorm2d, |
|
|
) |
|
|
|
|
|
_ACTLAYERS = dict( |
|
|
silu=nn.SiLU, |
|
|
gelu=nn.GELU, |
|
|
relu=nn.ReLU, |
|
|
sigmoid=nn.Sigmoid, |
|
|
) |
|
|
|
|
|
norm_layer: nn.Module = _NORMLAYERS.get(norm_layer.lower(), None) |
|
|
ssm_act_layer: nn.Module = _ACTLAYERS.get(ssm_act_layer.lower(), None) |
|
|
mlp_act_layer: nn.Module = _ACTLAYERS.get(mlp_act_layer.lower(), None) |
|
|
|
|
|
_make_patch_embed = dict( |
|
|
v1=self._make_patch_embed, |
|
|
v2=self._make_patch_embed_v2, |
|
|
).get(patchembed_version, None) |
|
|
self.patch_embed = _make_patch_embed(in_chans, dims[0], patch_size, patch_norm, norm_layer, channel_first=self.channel_first) |
|
|
|
|
|
_make_downsample = dict( |
|
|
v1=PatchMerging2D, |
|
|
v2=self._make_downsample, |
|
|
v3=self._make_downsample_v3, |
|
|
none=(lambda *_, **_k: None), |
|
|
).get(downsample_version, None) |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
|
for i_layer in range(self.num_layers): |
|
|
downsample = _make_downsample( |
|
|
self.dims[i_layer], |
|
|
self.dims[i_layer + 1], |
|
|
norm_layer=norm_layer, |
|
|
channel_first=self.channel_first, |
|
|
) if (i_layer < self.num_layers - 1) else nn.Identity() |
|
|
|
|
|
self.layers.append(self._make_layer( |
|
|
dim = self.dims[i_layer], |
|
|
drop_path = dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
|
use_checkpoint=use_checkpoint, |
|
|
norm_layer=norm_layer, |
|
|
downsample=downsample, |
|
|
channel_first=self.channel_first, |
|
|
|
|
|
ssm_d_state=ssm_d_state, |
|
|
ssm_ratio=ssm_ratio, |
|
|
ssm_dt_rank=ssm_dt_rank, |
|
|
ssm_act_layer=ssm_act_layer, |
|
|
ssm_conv=ssm_conv, |
|
|
ssm_conv_bias=ssm_conv_bias, |
|
|
ssm_drop_rate=ssm_drop_rate, |
|
|
ssm_init=ssm_init, |
|
|
forward_type=forward_type, |
|
|
|
|
|
mlp_ratio=mlp_ratio, |
|
|
mlp_act_layer=mlp_act_layer, |
|
|
mlp_drop_rate=mlp_drop_rate, |
|
|
gmlp=gmlp, |
|
|
)) |
|
|
|
|
|
self.classifier = nn.Sequential(OrderedDict( |
|
|
norm=norm_layer(self.num_features), |
|
|
permute=(Permute(0, 3, 1, 2) if not self.channel_first else nn.Identity()), |
|
|
avgpool=nn.AdaptiveAvgPool2d(1), |
|
|
flatten=nn.Flatten(1), |
|
|
head=nn.Linear(self.num_features, num_classes), |
|
|
)) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m: nn.Module): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod |
|
|
def _make_patch_embed(in_chans=3, embed_dim=96, patch_size=4, patch_norm=True, norm_layer=nn.LayerNorm, channel_first=False): |
|
|
|
|
|
return nn.Sequential( |
|
|
nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True), |
|
|
(nn.Identity() if channel_first else Permute(0, 2, 3, 1)), |
|
|
(norm_layer(embed_dim) if patch_norm else nn.Identity()), |
|
|
) |
|
|
|
|
|
@staticmethod |
|
|
def _make_patch_embed_v2(in_chans=3, embed_dim=96, patch_size=4, patch_norm=True, norm_layer=nn.LayerNorm, channel_first=False): |
|
|
|
|
|
assert patch_size == 4 |
|
|
return nn.Sequential( |
|
|
nn.Conv2d(in_chans, embed_dim // 2, kernel_size=3, stride=2, padding=1), |
|
|
(nn.Identity() if (channel_first or (not patch_norm)) else Permute(0, 2, 3, 1)), |
|
|
(norm_layer(embed_dim // 2) if patch_norm else nn.Identity()), |
|
|
(nn.Identity() if (channel_first or (not patch_norm)) else Permute(0, 3, 1, 2)), |
|
|
nn.GELU(), |
|
|
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1), |
|
|
(nn.Identity() if channel_first else Permute(0, 2, 3, 1)), |
|
|
(norm_layer(embed_dim) if patch_norm else nn.Identity()), |
|
|
) |
|
|
|
|
|
@staticmethod |
|
|
def _make_downsample(dim=96, out_dim=192, norm_layer=nn.LayerNorm, channel_first=False): |
|
|
|
|
|
return nn.Sequential( |
|
|
(nn.Identity() if channel_first else Permute(0, 3, 1, 2)), |
|
|
nn.Conv2d(dim, out_dim, kernel_size=2, stride=2), |
|
|
(nn.Identity() if channel_first else Permute(0, 2, 3, 1)), |
|
|
norm_layer(out_dim), |
|
|
) |
|
|
|
|
|
@staticmethod |
|
|
def _make_downsample_v3(dim=96, out_dim=192, norm_layer=nn.LayerNorm, channel_first=False): |
|
|
|
|
|
return nn.Sequential( |
|
|
(nn.Identity() if channel_first else Permute(0, 3, 1, 2)), |
|
|
nn.Conv2d(dim, out_dim, kernel_size=3, stride=2, padding=1), |
|
|
(nn.Identity() if channel_first else Permute(0, 2, 3, 1)), |
|
|
norm_layer(out_dim), |
|
|
) |
|
|
|
|
|
@staticmethod |
|
|
def _make_layer( |
|
|
dim=96, |
|
|
drop_path=[0.1, 0.1], |
|
|
use_checkpoint=False, |
|
|
norm_layer=nn.LayerNorm, |
|
|
downsample=nn.Identity(), |
|
|
channel_first=False, |
|
|
|
|
|
ssm_d_state=16, |
|
|
ssm_ratio=2.0, |
|
|
ssm_dt_rank="auto", |
|
|
ssm_act_layer=nn.SiLU, |
|
|
ssm_conv=3, |
|
|
ssm_conv_bias=True, |
|
|
ssm_drop_rate=0.0, |
|
|
ssm_init="v0", |
|
|
forward_type="v2", |
|
|
|
|
|
mlp_ratio=4.0, |
|
|
mlp_act_layer=nn.GELU, |
|
|
mlp_drop_rate=0.0, |
|
|
gmlp=False, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
depth = len(drop_path) |
|
|
blocks = [] |
|
|
for d in range(depth): |
|
|
blocks.append(VSSBlock( |
|
|
hidden_dim=dim, |
|
|
drop_path=drop_path[d], |
|
|
norm_layer=norm_layer, |
|
|
channel_first=channel_first, |
|
|
ssm_d_state=ssm_d_state, |
|
|
ssm_ratio=ssm_ratio, |
|
|
ssm_dt_rank=ssm_dt_rank, |
|
|
ssm_act_layer=ssm_act_layer, |
|
|
ssm_conv=ssm_conv, |
|
|
ssm_conv_bias=ssm_conv_bias, |
|
|
ssm_drop_rate=ssm_drop_rate, |
|
|
ssm_init=ssm_init, |
|
|
forward_type=forward_type, |
|
|
mlp_ratio=mlp_ratio, |
|
|
mlp_act_layer=mlp_act_layer, |
|
|
mlp_drop_rate=mlp_drop_rate, |
|
|
gmlp=gmlp, |
|
|
use_checkpoint=use_checkpoint, |
|
|
)) |
|
|
|
|
|
return nn.Sequential(OrderedDict( |
|
|
blocks=nn.Sequential(*blocks,), |
|
|
downsample=downsample, |
|
|
)) |
|
|
|
|
|
def forward(self, x: torch.Tensor): |
|
|
x = self.patch_embed(x) |
|
|
for layer in self.layers: |
|
|
x = layer(x) |
|
|
x = self.classifier(x) |
|
|
return x |
|
|
|
|
|
def flops(self, shape=(3, 224, 224)): |
|
|
|
|
|
supported_ops={ |
|
|
"aten::silu": None, |
|
|
"aten::neg": None, |
|
|
"aten::exp": None, |
|
|
"aten::flip": None, |
|
|
|
|
|
|
|
|
"prim::PythonOp.SelectiveScanMamba": selective_scan_flop_jit, |
|
|
"prim::PythonOp.SelectiveScanOflex": selective_scan_flop_jit, |
|
|
"prim::PythonOp.SelectiveScanCore": selective_scan_flop_jit, |
|
|
"prim::PythonOp.SelectiveScanNRow": selective_scan_flop_jit, |
|
|
} |
|
|
|
|
|
model = copy.deepcopy(self) |
|
|
model.cuda().eval() |
|
|
|
|
|
input = torch.randn((1, *shape), device=next(model.parameters()).device) |
|
|
params = parameter_count(model)[""] |
|
|
Gflops, unsupported = flop_count(model=model, inputs=(input,), supported_ops=supported_ops) |
|
|
|
|
|
del model, input |
|
|
return sum(Gflops.values()) * 1e9 |
|
|
return f"params {params} GFLOPs {sum(Gflops.values())}" |
|
|
|
|
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): |
|
|
|
|
|
def check_name(src, state_dict: dict = state_dict, strict=False): |
|
|
if strict: |
|
|
if prefix + src in list(state_dict.keys()): |
|
|
return True |
|
|
else: |
|
|
key = prefix + src |
|
|
for k in list(state_dict.keys()): |
|
|
if k.startswith(key): |
|
|
return True |
|
|
return False |
|
|
|
|
|
def change_name(src, dst, state_dict: dict = state_dict, strict=False): |
|
|
if strict: |
|
|
if prefix + src in list(state_dict.keys()): |
|
|
state_dict[prefix + dst] = state_dict[prefix + src] |
|
|
state_dict.pop(prefix + src) |
|
|
else: |
|
|
key = prefix + src |
|
|
for k in list(state_dict.keys()): |
|
|
if k.startswith(key): |
|
|
new_k = prefix + dst + k[len(key):] |
|
|
state_dict[new_k] = state_dict[k] |
|
|
state_dict.pop(k) |
|
|
|
|
|
change_name("patch_embed.proj", "patch_embed.0") |
|
|
change_name("patch_embed.norm", "patch_embed.2") |
|
|
for i in range(100): |
|
|
for j in range(100): |
|
|
change_name(f"layers.{i}.blocks.{j}.ln_1", f"layers.{i}.blocks.{j}.norm") |
|
|
change_name(f"layers.{i}.blocks.{j}.self_attention", f"layers.{i}.blocks.{j}.op") |
|
|
change_name("norm", "classifier.norm") |
|
|
change_name("head", "classifier.head") |
|
|
|
|
|
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) |
|
|
|
|
|
|
|
|
|
|
|
class Backbone_VSSM(VSSM): |
|
|
def __init__(self, out_indices=(0, 1, 2, 3), pretrained=None, norm_layer="ln", **kwargs): |
|
|
kwargs.update(norm_layer=norm_layer) |
|
|
super().__init__(**kwargs) |
|
|
self.channel_first = (norm_layer.lower() in ["bn", "ln2d"]) |
|
|
_NORMLAYERS = dict( |
|
|
ln=nn.LayerNorm, |
|
|
ln2d=LayerNorm2d, |
|
|
bn=nn.BatchNorm2d, |
|
|
) |
|
|
norm_layer: nn.Module = _NORMLAYERS.get(norm_layer.lower(), None) |
|
|
|
|
|
self.out_indices = out_indices |
|
|
for i in out_indices: |
|
|
layer = norm_layer(self.dims[i]) |
|
|
layer_name = f'outnorm{i}' |
|
|
self.add_module(layer_name, layer) |
|
|
|
|
|
del self.classifier |
|
|
self.load_pretrained(pretrained) |
|
|
|
|
|
def load_pretrained(self, ckpt=None, key="model"): |
|
|
if ckpt is None: |
|
|
return |
|
|
|
|
|
try: |
|
|
_ckpt = torch.load(open(ckpt, "rb"), map_location=torch.device("cpu")) |
|
|
print(f"Successfully load ckpt {ckpt}") |
|
|
incompatibleKeys = self.load_state_dict(_ckpt[key], strict=False) |
|
|
print(incompatibleKeys) |
|
|
except Exception as e: |
|
|
print(f"Failed loading checkpoint form {ckpt}: {e}") |
|
|
|
|
|
def forward(self, x): |
|
|
def layer_forward(l, x): |
|
|
x = l.blocks(x) |
|
|
y = l.downsample(x) |
|
|
return x, y |
|
|
|
|
|
x = self.patch_embed(x) |
|
|
outs = [] |
|
|
for i, layer in enumerate(self.layers): |
|
|
o, x = layer_forward(layer, x) |
|
|
if i in self.out_indices: |
|
|
norm_layer = getattr(self, f'outnorm{i}') |
|
|
out = norm_layer(o) |
|
|
if not self.channel_first: |
|
|
out = out.permute(0, 3, 1, 2).contiguous() |
|
|
outs.append(out) |
|
|
|
|
|
if len(self.out_indices) == 0: |
|
|
return x |
|
|
|
|
|
return outs |
|
|
|
|
|
|