|
|
import torch
|
|
|
import torch.nn.functional as F
|
|
|
from einops import rearrange
|
|
|
from torch import nn
|
|
|
|
|
|
class TwoLayerConv2d(nn.Sequential):
|
|
|
def __init__(self, in_channels, out_channels, kernel_size=3):
|
|
|
super().__init__(nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size,
|
|
|
padding=kernel_size // 2, stride=1, bias=False),
|
|
|
nn.BatchNorm2d(in_channels),
|
|
|
nn.ReLU(),
|
|
|
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,
|
|
|
padding=kernel_size // 2, stride=1)
|
|
|
)
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout):
|
|
|
super().__init__()
|
|
|
self.layers = nn.ModuleList([])
|
|
|
for _ in range(depth):
|
|
|
self.layers.append(nn.ModuleList([
|
|
|
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
|
|
|
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
|
|
|
]))
|
|
|
def forward(self, x, mask = None):
|
|
|
for attn, ff in self.layers:
|
|
|
x = attn(x, mask = mask)
|
|
|
x = ff(x)
|
|
|
return x
|
|
|
|
|
|
class TransformerDecoder(nn.Module):
|
|
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout, softmax=True):
|
|
|
super().__init__()
|
|
|
self.layers = nn.ModuleList([])
|
|
|
for _ in range(depth):
|
|
|
self.layers.append(nn.ModuleList([
|
|
|
Residual2(PreNorm2(dim, Cross_Attention(dim, heads = heads,
|
|
|
dim_head = dim_head, dropout = dropout,
|
|
|
softmax=softmax))),
|
|
|
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
|
|
|
]))
|
|
|
def forward(self, x, m, mask = None):
|
|
|
"""target(query), memory"""
|
|
|
for attn, ff in self.layers:
|
|
|
x = attn(x, m, mask = mask)
|
|
|
x = ff(x)
|
|
|
return x
|
|
|
|
|
|
class PreNorm(nn.Module):
|
|
|
def __init__(self, dim, fn):
|
|
|
super().__init__()
|
|
|
self.norm = nn.LayerNorm(dim)
|
|
|
self.fn = fn
|
|
|
def forward(self, x, **kwargs):
|
|
|
return self.fn(self.norm(x), **kwargs)
|
|
|
|
|
|
class PreNorm2(nn.Module):
|
|
|
def __init__(self, dim, fn):
|
|
|
super().__init__()
|
|
|
self.norm = nn.LayerNorm(dim)
|
|
|
self.fn = fn
|
|
|
def forward(self, x, x2, **kwargs):
|
|
|
return self.fn(self.norm(x), self.norm(x2), **kwargs)
|
|
|
|
|
|
class Residual(nn.Module):
|
|
|
def __init__(self, fn):
|
|
|
super().__init__()
|
|
|
self.fn = fn
|
|
|
def forward(self, x, **kwargs):
|
|
|
return self.fn(x, **kwargs) + x
|
|
|
|
|
|
class Residual2(nn.Module):
|
|
|
def __init__(self, fn):
|
|
|
super().__init__()
|
|
|
self.fn = fn
|
|
|
def forward(self, x, x2, **kwargs):
|
|
|
return self.fn(x, x2, **kwargs) + x
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
|
def __init__(self, dim, hidden_dim, dropout = 0.):
|
|
|
super().__init__()
|
|
|
self.net = nn.Sequential(
|
|
|
nn.Linear(dim, hidden_dim),
|
|
|
nn.GELU(),
|
|
|
nn.Dropout(dropout),
|
|
|
nn.Linear(hidden_dim, dim),
|
|
|
nn.Dropout(dropout)
|
|
|
)
|
|
|
def forward(self, x):
|
|
|
return self.net(x)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
|
|
super().__init__()
|
|
|
inner_dim = dim_head * heads
|
|
|
self.heads = heads
|
|
|
self.scale = dim ** -0.5
|
|
|
|
|
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
|
|
self.to_out = nn.Sequential(
|
|
|
nn.Linear(inner_dim, dim),
|
|
|
nn.Dropout(dropout)
|
|
|
)
|
|
|
|
|
|
def forward(self, x, mask = None):
|
|
|
b, n, _, h = *x.shape, self.heads
|
|
|
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
|
|
|
|
|
|
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
|
|
|
mask_value = -torch.finfo(dots.dtype).max
|
|
|
|
|
|
if mask is not None:
|
|
|
mask = F.pad(mask.flatten(1), (1, 0), value = True)
|
|
|
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
|
|
|
mask = mask[:, None, :] * mask[:, :, None]
|
|
|
dots.masked_fill_(~mask, mask_value)
|
|
|
del mask
|
|
|
|
|
|
attn = dots.softmax(dim=-1)
|
|
|
|
|
|
|
|
|
out = torch.einsum('bhij,bhjd->bhid', attn, v)
|
|
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
|
out = self.to_out(out)
|
|
|
return out
|
|
|
|
|
|
class Cross_Attention(nn.Module):
|
|
|
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., softmax=True):
|
|
|
super().__init__()
|
|
|
inner_dim = dim_head * heads
|
|
|
self.heads = heads
|
|
|
self.scale = dim ** -0.5
|
|
|
|
|
|
self.softmax = softmax
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
|
|
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
|
|
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
|
|
|
|
|
self.to_out = nn.Sequential(
|
|
|
nn.Linear(inner_dim, dim),
|
|
|
nn.Dropout(dropout)
|
|
|
)
|
|
|
|
|
|
def forward(self, x, m, mask = None):
|
|
|
|
|
|
b, n, _, h = *x.shape, self.heads
|
|
|
q = self.to_q(x)
|
|
|
k = self.to_k(m)
|
|
|
v = self.to_v(m)
|
|
|
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), [q,k,v])
|
|
|
|
|
|
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
|
|
|
mask_value = -torch.finfo(dots.dtype).max
|
|
|
|
|
|
if mask is not None:
|
|
|
mask = F.pad(mask.flatten(1), (1, 0), value = True)
|
|
|
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
|
|
|
mask = mask[:, None, :] * mask[:, :, None]
|
|
|
dots.masked_fill_(~mask, mask_value)
|
|
|
del mask
|
|
|
|
|
|
if self.softmax:
|
|
|
attn = dots.softmax(dim=-1)
|
|
|
else:
|
|
|
attn = dots
|
|
|
|
|
|
|
|
|
|
|
|
out = torch.einsum('bhij,bhjd->bhid', attn, v)
|
|
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
|
out = self.to_out(out)
|
|
|
|
|
|
|
|
|
return out |