import torch import torch.nn as nn from functools import partial import torch.nn.functional as F class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.,channels_first=True): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features Linear = partial(nn.Conv2d, kernel_size=1, padding=0) if channels_first else nn.Linear self.fc1 = Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def dsconv_3x3(in_channel, out_channel): return nn.Sequential( nn.Conv2d(in_channel, in_channel, kernel_size=3, stride=1, padding=1, groups=in_channel), nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=1, padding=0, groups=1), nn.BatchNorm2d(out_channel), nn.ReLU() ) class changedetector(nn.Module): def __init__(self, in_channel): super().__init__() self.mlp1 = Mlp(in_features = in_channel, out_features = in_channel) self.mlp2 = Mlp(in_features = in_channel, out_features=2) self.dwc = dsconv_3x3(in_channel, in_channel) def forward(self, x): x1 = self.mlp1(x) x_d = self.dwc(x1) x_out = self.mlp2(x1 + x_d) x_out = F.interpolate( x_out, scale_factor=(4,4), mode="bilinear", align_corners=False, ) return x_out