from rscd.models.decoderheads.lgpnet.unet_parts import * class BCDNET(nn.Module): """ Local-Global Pyramid Network (LGPNet) """ def __init__(self, n_channels, n_classes): super(BCDNET, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.conv = TribleConv(128, 64) self.final = OutConv(64, n_classes) def forward(self, x=[]): # out1 = x[0] # out2 = x[1] feat1 = x[2] feat2 = x[3] fusionfeats = torch.cat([feat1, feat2], dim=1) x = self.conv(fusionfeats) logits = self.final(x) return logits class TribleConv(nn.Module): """(convolution => [BN] => ReLU) 2次""" def __init__(self, in_channels, out_channels): super().__init__() self.trible_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.trible_conv(x) if __name__ == '__main__': net = BCDNET(n_channels=3, n_classes=1) print(net)