import torch.nn as nn import torch.nn.functional as F import torch """ This code refers to "Pyramid scene parsing network". """ class SPM(nn.Module): def __init__(self, features, out_features=1024, sizes=(1, 2, 3, 6)): super().__init__() self.stages = [] self.stages = nn.ModuleList([self._make_stage(features, size) for size in sizes]) self.bottleneck = nn.Conv2d(features * (len(sizes) + 1), out_features, kernel_size=1) self.relu = nn.ReLU() def _make_stage(self, features, size): prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) conv = nn.Conv2d(features, features, kernel_size=1, bias=False) return nn.Sequential(prior, conv) def forward(self, feats): h, w = feats.size(2), feats.size(3) priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=False) for stage in self.stages] + [feats] bottle = self.bottleneck(torch.cat(priors, 1)) return self.relu(bottle)