File size: 6,474 Bytes
7575913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy
import numpy as np
import torch
import random
import cv2


class Scale(object):
    """
    Resize the given image to a fixed scale
    """

    def __init__(self, wi, he):
        '''
        :param wi: width after resizing
        :param he: height after reszing
        '''
        self.w = wi
        self.h = he

    # modified from torchvision to add support for max size

    def __call__(self, img, label):
        '''
        :param img: RGB image
        :param label: semantic label image
        :return: resized images
        '''
        # bilinear interpolation for RGB image
        img = cv2.resize(img, (self.w, self.h))
        # nearest neighbour interpolation for label image
        label = cv2.resize(label, (self.w, self.h), interpolation=cv2.INTER_NEAREST)
        return [img, label]


class Resize(object):
    def __init__(self, min_size, max_size, strict=False):
        if not isinstance(min_size, (list, tuple)):
            min_size = (min_size,)
        self.min_size = min_size
        self.max_size = max_size
        self.strict = strict

    # modified from torchvision to add support for max size
    def get_size(self, image_size):
        w, h = image_size
        if not self.strict:
            size = random.choice(self.min_size)
            max_size = self.max_size
            if max_size is not None:
                min_original_size = float(min((w, h)))
                max_original_size = float(max((w, h)))
                if max_original_size / min_original_size * size > max_size:
                    size = int(round(max_size * min_original_size / max_original_size))

            if (w <= h and w == size) or (h <= w and h == size):
                return (h, w)

            if w < h:
                ow = size
                oh = int(size * h / w)
            else:
                oh = size
                ow = int(size * w / h)

            return (oh, ow)
        else:
            if w < h:
                return (self.max_size, self.min_size[0])
            else:
                return (self.min_size[0], self.max_size)

    def __call__(self, image, label):
        size = self.get_size(image.shape[:2])
        image = cv2.resize(image, size)
        # I confirm that the output size is right, not reversed
        label = cv2.resize(label, size, interpolation=cv2.INTER_NEAREST)
        return (image, label)


class RandomCropResize(object):
    """
    Randomly crop and resize the given image with a probability of 0.5
    """

    def __init__(self, crop_area):
        '''
        :param crop_area: area to be cropped (this is the max value and we select between 0 and crop area
        '''
        self.cw = crop_area
        self.ch = crop_area

    def __call__(self, img, label):
        if random.random() < 0.5:
            h, w = img.shape[:2]
            x1 = random.randint(0, self.ch)
            y1 = random.randint(0, self.cw)

            img_crop = img[y1:h - y1, x1:w - x1]
            label_crop = label[y1:h - y1, x1:w - x1]

            img_crop = cv2.resize(img_crop, (w, h))
            label_crop = cv2.resize(label_crop, (w, h), interpolation=cv2.INTER_NEAREST)

            return img_crop, label_crop
        else:
            return [img, label]


class RandomFlip(object):
    """
    Randomly flip the given Image with a probability of 0.5
    """

    def __call__(self, image, label):
        if random.random() < 0.5:
                image = cv2.flip(image, 0)  # horizontal flip
                label = cv2.flip(label, 0)  # horizontal flip
        if random.random() < 0.5:
                image = cv2.flip(image, 1)  # veritcal flip
                label = cv2.flip(label, 1)  # veritcal flip
        return [image, label]


class RandomExchange(object):
    """
    Randomly flip the given Image with a probability of 0.5
    """

    def __call__(self, image, label):
        if random.random() < 0.5:
            pre_img = image[:, :, 0:3]
            post_img = image[:, :, 3:6]
            image = numpy.concatenate((post_img, pre_img), axis=2)
        return [image, label]


class Normalize(object):
    """
    Given mean: (B, G, R) and std: (B, G, R),
    will normalize each channel of the torch.*Tensor, i.e.
    channel = (channel - mean) / std
    """

    def __init__(self, mean, std):
        '''
        :param mean: global mean computed from dataset
        :param std: global std computed from dataset
        '''
        self.mean = mean
        self.std = std
        self.depth_mean = [0.5]
        self.depth_std = [0.5]

    def __call__(self, image, label):
        image = image.astype(np.float32)
        image = image / 255
        label = np.ceil(label / 255)
        for i in range(6):
            image[:, :, i] -= self.mean[i]
        for i in range(6):
            image[:, :, i] /= self.std[i]

        return [image, label]


class GaussianNoise(object):
    def __init__(self, std=0.05):
        '''
        :param mean: global mean computed from dataset
        :param std: global std computed from dataset
        '''
        self.std = std

    def __call__(self, image, label):
        noise = np.random.normal(loc=0, scale=self.std, size=image.shape)
        image = image + noise.astype(np.float32)
        return [image, label]


class ToTensor(object):
    '''
    This class converts the data to tensor so that it can be processed by PyTorch
    '''

    def __init__(self, scale=1):
        '''
        :param scale: set this parameter according to the output scale
        '''
        self.scale = scale

    def __call__(self, image, label):
        if self.scale != 1:
            h, w = label.shape[:2]
            image = cv2.resize(image, (int(w), int(h)))
            label = cv2.resize(label, (int(w / self.scale), int(h / self.scale)), \
                               interpolation=cv2.INTER_NEAREST)
        image = image[:, :, ::-1].copy()  # .copy() is to solve "torch does not support negative index"
        image = image.transpose((2, 0, 1))
        image_tensor = torch.from_numpy(image)
        label_tensor = torch.LongTensor(np.array(label, dtype=np.int)).unsqueeze(dim=0)

        return [image_tensor, label_tensor]


class Compose(object):
    """
    Composes several transforms together.
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, *args):
        for t in self.transforms:
            args = t(*args)
        return args