File size: 5,977 Bytes
8cf4db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""

CD Dataset

"""
import os
from PIL import Image
import numpy as np
from torch.utils import data
import data.util as Util
from torch.utils.data import Dataset
import torchvision
import torch

totensor = torchvision.transforms.ToTensor()

"""

CD Dataset 

├─image

├─image_post

├─label

└─list

"""

IMG_FOLDER_NAME = 'A'
IMG_POST_FOLDER_NAME = 'B'
LABEL_FOLDER_NAME = 'label'
LABEL1_FOLDER_NAME = 'label1'
LABEL2_FOLDER_NAME = 'label2'
LIST_FOLDER_NAME = 'list'

label_suffix = ".png"

#list内存放image_name 构建读取图片名字函数
def load_img_name_list(dataset_path):
    img_name_list = np.loadtxt(dataset_path, dtype=np.str_)
    if img_name_list.ndim == 2:
        return img_name_list[:, 0]
    return img_name_list

#获取各个文件夹的路径
def get_img_path(root_dir, img_name):
    return os.path.join(root_dir, IMG_FOLDER_NAME, img_name)

def get_img_post_path(root_dir, img_name):
    return os.path.join(root_dir, IMG_POST_FOLDER_NAME, img_name)

def get_label_path(root_dir, img_name):
    return os.path.join(root_dir, LABEL_FOLDER_NAME, img_name)

def get_label1_path(root_dir, img_name):
    return os.path.join(root_dir, LABEL1_FOLDER_NAME, img_name)

def get_label2_path(root_dir, img_name):
    return os.path.join(root_dir, LABEL2_FOLDER_NAME, img_name)

class CDDataset(Dataset):
    def __init__(self, root_dir, resolution=256, split='train', data_len=-1, label_transform=None):

        self.root_dir = root_dir
        self.resolution = resolution
        self.data_len = data_len
        self.split = split #train / val / test
        self.label_transform = label_transform

        self.list_path = os.path.join(self.root_dir, LIST_FOLDER_NAME, self.split + '.txt')

        self.img_name_list = load_img_name_list(self.list_path)

        self.dataset_len = len(self.img_name_list)

        if self.data_len <= 0:
            self.data_len = self.dataset_len
        else:
            self.data_len = min(self.dataset_len, self.data_len)

    def __len__(self):
        return self.data_len

    def __getitem__(self, index):
        A_path = get_img_path(self.root_dir, self.img_name_list[index % self.data_len])
        B_path = get_img_post_path(self.root_dir, self.img_name_list[index % self.data_len])

        img_A = Image.open(A_path).convert('RGB')
        img_B = Image.open(B_path).convert('RGB')

        L_path = get_label_path(self.root_dir, self.img_name_list[index % self.data_len])
        img_label = Image.open(L_path).convert("RGB")

        img_A = Util.transform_augment_cd(img_A, min_max=(-1, 1))
        img_B = Util.transform_augment_cd(img_B, min_max=(-1, 1))
        img_label = Util.transform_augment_cd(img_label, min_max=(0, 1))
        if img_label.dim() > 2:
            img_label = img_label[0]

        return {'A':img_A, 'B':img_B, 'L':img_label, 'Index':index}



class SCDDataset(Dataset):
    def __init__(self, root_dir, resolution=512, split='train', data_len=-1, label_transform=None):

        self.root_dir = root_dir
        self.resolution = resolution
        self.data_len = data_len
        self.split = split #train / val / test
        self.label_transform = label_transform

        self.list_path = os.path.join(self.root_dir, LIST_FOLDER_NAME, self.split + '.txt')

        self.img_name_list = load_img_name_list(self.list_path)

        self.dataset_len = len(self.img_name_list)

        if self.data_len <= 0:
            self.data_len = self.dataset_len
        else:
            self.data_len = min(self.dataset_len, self.data_len)

    def __len__(self):
        return self.data_len

    def __getitem__(self, index):
        A_path = get_img_path(self.root_dir, self.img_name_list[index % self.data_len])
        B_path = get_img_post_path(self.root_dir, self.img_name_list[index % self.data_len])
        name = A_path.split('\\')[-1].split('.')[0]
        img_A = Image.open(A_path).convert('RGB')
        img_B = Image.open(B_path).convert('RGB')

        L_path = get_label_path(self.root_dir, self.img_name_list[index % self.data_len])
        L1_path = get_label1_path(self.root_dir, self.img_name_list[index % self.data_len])
        L2_path = get_label2_path(self.root_dir, self.img_name_list[index % self.data_len])
        img_label = np.array(Image.open(L_path), dtype=np.uint8)
        img_label1 = np.array(Image.open(L1_path), dtype=np.uint8)
        img_label2 = np.array(Image.open(L2_path), dtype=np.uint8)

        img_A = Util.transform_augment_cd(img_A, min_max=(-1, 1))
        img_B = Util.transform_augment_cd(img_B, min_max=(-1, 1))
        img_label = torch.from_numpy(img_label)
        img_label1 = torch.from_numpy(img_label1)
        # add cls label on label1
        cls_category1 = torch.unique(img_label1)
        cls_label1 = torch.zeros(7, dtype = int)
        for index in cls_category1:
            cls_label1[int(index)] = 1

        img_label2 = torch.from_numpy(img_label2)
        # add cls label on label2
        cls_category2 = torch.unique(img_label2)
        cls_label2 = torch.zeros(7, dtype=int)
        for index in cls_category2:
            cls_label2[int(index)] = 1

        if img_label.dim() > 2:
            img_label = img_label[0]
            img_label1 = img_label1[0]
            img_label2 = img_label2[0]

        return {'A':img_A, 'B':img_B, 'L':img_label, 'L1':img_label1, 'L2':img_label2,
                'Index':index, 'name':name, 'cls1':cls_label1, 'cls2':cls_label2}

if __name__ == '__main__':
    root_dir = r'E:\cddataset\mmcd\Second_my'
    cddata = SCDDataset(root_dir=root_dir)
    list_path = os.path.join(root_dir, 'list', 'val', '.txt')
    for i in range(593):
        cls_labe1 = cddata.__getitem__(i)['cls1']
        print(cls_labe1)
        cls_labe2 = cddata.__getitem__(i)['cls2']
        print(cls_labe2)