File size: 13,713 Bytes
7ad9dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from __future__ import annotations
import torch
import torch.nn as nn
import torch.nn.functional as F
from monai.networks.blocks.convolutions import Convolution
from monai.networks.blocks.segresnet_block import get_conv_layer, get_upsample_layer
from monai.networks.layers.factories import Dropout
from monai.networks.layers.utils import get_act_layer, get_norm_layer
from monai.utils import UpsampleMode
from einops import rearrange
from models.mamba_customer import ConvMamba, M3, PatchEmbed, PatchUnEmbed
from models.Blocks import CAB, SAB, VSSBlock, ShallowFusionAttnBlock
import warnings
warnings.filterwarnings("ignore")

def get_dwconv_layer(

        spatial_dims: int, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1,

        bias: bool = False

):
    depth_conv = Convolution(spatial_dims=spatial_dims, in_channels=in_channels, out_channels=in_channels,
                             strides=stride, kernel_size=kernel_size, bias=bias, conv_only=True, groups=in_channels)
    point_conv = Convolution(spatial_dims=spatial_dims, in_channels=in_channels, out_channels=out_channels,
                             strides=stride, kernel_size=1, bias=bias, conv_only=True, groups=1)
    return torch.nn.Sequential(depth_conv, point_conv)


class SRCMLayer(nn.Module):
    def __init__(self, input_dim, output_dim, d_state=16, d_conv=4, expand=2, conv_mode='deepwise'):
        super().__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.norm = nn.LayerNorm(input_dim)
        self.convmamba = ConvMamba(
            d_model=input_dim,
            d_state=d_state,
            d_conv=d_conv,
            expand=expand,
            bimamba_type="v2",
            conv_mode=conv_mode
        )
        self.proj = nn.Linear(input_dim, output_dim)
        self.skip_scale = nn.Parameter(torch.ones(1))

    def forward(self, x):
        if x.dtype == torch.float16:
            x = x.type(torch.float32)
        B, C = x.shape[:2]
        assert C == self.input_dim
        n_tokens = x.shape[2:].numel()
        img_dims = x.shape[2:]
        x_flat = x.reshape(B, C, n_tokens).transpose(-1, -2)
        x_norm = self.norm(x_flat)
        x_mamba = self.convmamba(x_norm) + self.skip_scale * x_flat
        x_mamba = self.norm(x_mamba)
        x_mamba = self.proj(x_mamba)
        out = x_mamba.transpose(-1, -2).reshape(B, self.output_dim, *img_dims)
        return out


def get_srcm_layer(

        spatial_dims: int, in_channels: int, out_channels: int, stride: int = 1, conv_mode: str = "deepwise"

):
    srcm_layer = SRCMLayer(input_dim=in_channels, output_dim=out_channels, conv_mode=conv_mode)
    if stride != 1:
        if spatial_dims == 2:
            return nn.Sequential(srcm_layer, nn.MaxPool2d(kernel_size=stride, stride=stride))
    return srcm_layer

class SRCMBlock(nn.Module):

    def __init__(

            self,

            spatial_dims: int,

            in_channels: int,

            norm: tuple | str,

            kernel_size: int = 3,

            conv_mode: str = "deepwise",

            act: tuple | str = ("RELU", {"inplace": True}),

    ) -> None:
        """

        Args:

            spatial_dims: number of spatial dimensions, could be 1, 2 or 3.

            in_channels: number of input channels.

            norm: feature normalization type and arguments.

            kernel_size: convolution kernel size, the value should be an odd number. Defaults to 3.

            act: activation type and arguments. Defaults to ``RELU``.

        """

        super().__init__()

        if kernel_size % 2 != 1:
            raise AssertionError("kernel_size should be an odd number.")
        # print(conv_mode)
        self.norm1 = get_norm_layer(name=norm, spatial_dims=spatial_dims, channels=in_channels)
        self.norm2 = get_norm_layer(name=norm, spatial_dims=spatial_dims, channels=in_channels)
        self.act = get_act_layer(act)
        self.conv1 = get_srcm_layer(
            spatial_dims, in_channels=in_channels, out_channels=in_channels, conv_mode=conv_mode
        )
        self.conv2 = get_srcm_layer(
            spatial_dims, in_channels=in_channels, out_channels=in_channels, conv_mode=conv_mode
        )

    def forward(self, x):
        identity = x

        x = self.norm1(x)
        x = self.act(x)
        x = self.conv1(x)

        x = self.norm2(x)
        x = self.act(x)
        x = self.conv2(x)

        x += identity

        return x


class CSI(nn.Module):
    def __init__(self, dim):
        super(CSI, self).__init__()
        self.shallow_fusion_attn = ShallowFusionAttnBlock(dim)
        self.m3 = M3(dim)
        self.vss = VSSBlock(hidden_dim=dim)
        self.patch_embed = PatchEmbed(in_chans=dim, embed_dim=dim)
        self.patch_unembed = PatchUnEmbed(in_chans=dim, embed_dim=dim)
    def forward(self, I1, I2, h, w):
        I1_fuse, I2_fuse = self.shallow_fusion_attn(I1, I2, h, w)
        fusion = torch.abs(I1_fuse - I2_fuse)
        I1_token = self.patch_embed(I1_fuse)
        I2_token = self.patch_embed(I2_fuse)
        fusion_token = self.patch_embed(fusion)
        test_h, test_w = fusion.shape[2], fusion.shape[3]
        fusion_token, _ = self.m3(I1_token, I2_token, fusion_token, test_h, test_w)
        fusion_out = self.patch_unembed(fusion_token, (h, w))
        return fusion_out

class STNR(nn.Module):
    def __init__(

            self,

            spatial_dims: int = 2,

            init_filters: int = 16,

            in_channels: int = 1,

            out_channels: int = 2,

            conv_mode: str = "deepwise",

            local_query_model = "orignal_dinner",

            dropout_prob: float | None = None,

            act: tuple | str = ("RELU", {"inplace": True}),

            norm: tuple | str = ("GROUP", {"num_groups": 8}),

            norm_name: str = "",

            num_groups: int = 8,

            use_conv_final: bool = True,

            blocks_down: tuple = (1, 2, 2, 4),

            blocks_up: tuple = (1, 1, 1),

            mode: str = "",

            up_mode="ResMamba",

            up_conv_mode="deepwise",

            resdiual=False,

            stage = 4,

            diff_abs="later",

            mamba_act = "silu",

            upsample_mode: UpsampleMode | str = UpsampleMode.NONTRAINABLE,

    ):
        super().__init__()

        if spatial_dims not in (2, 3):
            raise ValueError("`spatial_dims` can only be 2 or 3.")
        self.mode = mode
        self.stage = stage
        self.up_conv_mode = up_conv_mode
        self.mamba_act = mamba_act
        self.resdiual = resdiual
        self.up_mode = up_mode
        self.diff_abs = diff_abs
        self.conv_mode = conv_mode
        self.local_query_model = local_query_model
        self.spatial_dims = spatial_dims
        self.init_filters = init_filters
        self.channels_list = [self.init_filters, self.init_filters*2, self.init_filters*4, self.init_filters*8]
        self.in_channels = in_channels
        self.blocks_down = blocks_down
        self.blocks_up = blocks_up
        print(self.blocks_up)
        self.dropout_prob = dropout_prob
        self.act = act  # input options
        self.act_mod = get_act_layer(act)
        if norm_name:
            if norm_name.lower() != "group":
                raise ValueError(f"Deprecating option 'norm_name={norm_name}', please use 'norm' instead.")
            norm = ("group", {"num_groups": num_groups})
        self.norm = norm
        print(self.norm)
        self.upsample_mode = UpsampleMode(upsample_mode)
        self.use_conv_final = use_conv_final
        self.convInit = get_conv_layer(spatial_dims, in_channels, init_filters)
        self.srcm_encoder_layers = self._make_srcm_encoder_layers()
        self.srcm_decoder_layers, self.up_samples = self._make_srcm_decoder_layers(up_mode=self.up_mode)
        self.conv_final = self._make_final_conv(out_channels)
        self.fusion_blocks = nn.ModuleList(
            [CSI(self.channels_list[i]) for i in range(self.stage)]
        )
        self.cab_layers = nn.ModuleList([
            CAB(ch) for ch in self.channels_list[::-1][1:]
        ])
        self.sab_layers = nn.ModuleList([
            SAB(kernel_size=7) for _ in range(len(self.blocks_up))
        ])
        self.conv_down_layers = nn.ModuleList([
            nn.Conv2d(ch * 2, ch, kernel_size=1, stride=1, padding=0) for ch in self.channels_list[::-1][1:]
        ])
        if dropout_prob is not None:
            self.dropout = Dropout[Dropout.DROPOUT, spatial_dims](dropout_prob)

    def _make_srcm_encoder_layers(self):
        srcm_encoder_layers = nn.ModuleList()
        blocks_down, spatial_dims, filters, norm, conv_mode = (self.blocks_down, self.spatial_dims, self.init_filters, self.norm, self.conv_mode)
        for i, item in enumerate(blocks_down):
            layer_in_channels = filters * 2 ** i
            downsample_mamba = (
                get_srcm_layer(spatial_dims, layer_in_channels // 2, layer_in_channels, stride=2, conv_mode=conv_mode)
                if i > 0
                else nn.Identity()
            )
            down_layer = nn.Sequential(
                downsample_mamba,
                *[SRCMBlock(spatial_dims, layer_in_channels, norm=norm, act=self.act, conv_mode=conv_mode) for _ in range(item)]
            )
            srcm_encoder_layers.append(down_layer)
        return srcm_encoder_layers

    def _make_srcm_decoder_layers(self, up_mode):
        srcm_decoder_layers, up_samples = nn.ModuleList(), nn.ModuleList()
        upsample_mode, blocks_up, spatial_dims, filters, norm = (
            self.upsample_mode,
            self.blocks_up,
            self.spatial_dims,
            self.init_filters,
            self.norm,
        )
        if up_mode == 'SRCM':
            Block_up = SRCMBlock
        n_up = len(blocks_up)
        for i in range(n_up):
            sample_in_channels = filters * 2 ** (n_up - i)
            srcm_decoder_layers.append(
                nn.Sequential(
                    *[
                        Block_up(spatial_dims, sample_in_channels // 2, norm=norm, act=self.act, conv_mode=self.up_conv_mode)
                        for _ in range(blocks_up[i])
                    ]
                )
            )
            up_samples.append(
                nn.Sequential(
                    *[
                        get_conv_layer(spatial_dims, sample_in_channels, sample_in_channels // 2, kernel_size=1),
                        get_upsample_layer(spatial_dims, sample_in_channels // 2, upsample_mode=upsample_mode),
                    ]
                )
            )
        return srcm_decoder_layers, up_samples

    def _make_final_conv(self, out_channels: int):
        return nn.Sequential(
            get_norm_layer(name=self.norm, spatial_dims=self.spatial_dims, channels=self.init_filters),
            self.act_mod,
            get_conv_layer(self.spatial_dims, self.init_filters, out_channels, kernel_size=1, bias=True),
        )

    def encode(self, x: torch.Tensor) -> tuple[torch.Tensor, list[torch.Tensor]]:
        x = self.convInit(x)
        if self.dropout_prob is not None:
            x = self.dropout(x)
        down_x = []

        for down in self.srcm_encoder_layers:
            x = down(x)
            down_x.append(x)

        return x, down_x

    def decode(self, x: torch.Tensor, down_x: list[torch.Tensor]) -> torch.Tensor:
        for i, (up, upl) in enumerate(zip(self.up_samples, self.srcm_decoder_layers)):
            skip = down_x[i + 1]
            x_up = up(x) + skip
            x_cab = self.cab_layers[i](x_up) * x_up
            x_sab = self.sab_layers[i](x_cab) * x_cab
            x_srcm = upl(x_up)
            combined_out = torch.cat([x_sab, x_srcm], dim=1)
            final_out = self.conv_down_layers[i](combined_out)
            x = final_out
        if self.use_conv_final:
            x = self.conv_final(x)
        return x

    def forward(self, x1: torch.Tensor, x2:torch.Tensor) -> torch.Tensor:
        b, c, h, w = x1.shape
        x1, down_x1 = self.encode(x1)
        x2, down_x2 = self.encode(x2)
        down_x = []
        for i in range(len(down_x1)):
            x1_level, x2_level = down_x1[i], down_x2[i]
            H_i, W_i = x1_level.shape[2], x1_level.shape[3]
            if self.diff_abs == "later":
                if self.mode == "FUSION":
                    if i < self.stage:
                        zero_res = torch.zeros_like(x1_level)
                        fusion = self.fusion_blocks[i](x1_level, x2_level, H_i, W_i)
                    else:
                        fusion = torch.abs(x1_level - x2_level)
                else:
                    fusion = torch.abs(x1_level - x2_level)
            down_x.append(fusion)
        down_x.reverse()
        x = self.decode(down_x[0], down_x)
        return x

if __name__ == "__main__":
    device = "cuda:0"
    CDMamba = STNR(spatial_dims=2, in_channels=3, out_channels=2, init_filters=16, norm=("GROUP", {"num_groups": 8}),
                    mode="FUSION", conv_mode='orignal', local_query_model="orignal_dinner",
                    stage=4, mamba_act="silu", up_mode="SRCM", up_conv_mode='deepwise', blocks_down=(1, 2, 2, 4), blocks_up=(1, 1, 1),
                    resdiual=False, diff_abs="later").to(device)
    x = torch.randn(1, 3, 256, 256).to(device)
    y = CDMamba(x, x)
    print(y.shape)