File size: 4,953 Bytes
7ad9dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
import torch.nn as nn
from torch import Tensor, einsum
import torch.nn .functional as F
from misc.torchutils import class2one_hot,simplex
from models.darnet_help.loss_help import FocalLoss, dernet_dice_loss

def cross_entropy(input, target, weight=None, reduction='mean',ignore_index=255):
    """
    logSoftmax_with_loss
    :param input: torch.Tensor, N*C*H*W
    :param target: torch.Tensor, N*1*H*W,/ N*H*W
    :param weight: torch.Tensor, C
    :return: torch.Tensor [0]
    """
    target = target.long()
    if target.dim() == 4:
        target = torch.squeeze(target, dim=1)
    if input.shape[-1] != target.shape[-1]:
        input = F.interpolate(input, size=target.shape[1:], mode='bilinear',align_corners=True)

    return F.cross_entropy(input=input, target=target, weight=weight,
                           ignore_index=ignore_index, reduction=reduction)


def dice_loss(predicts,target,weight=None):
    idc= [0, 1]
    probs = torch.softmax(predicts, dim=1)
    # target = target.unsqueeze(1)
    target = class2one_hot(target, 7)
    assert simplex(probs) and simplex(target)

    pc = probs[:, idc, ...].type(torch.float32)
    tc = target[:, idc, ...].type(torch.float32)
    intersection: Tensor = einsum("bcwh,bcwh->bc", pc, tc)
    union: Tensor = (einsum("bkwh->bk", pc) + einsum("bkwh->bk", tc))

    divided: Tensor = torch.ones_like(intersection) - (2 * intersection + 1e-10) / (union + 1e-10)

    loss = divided.mean()
    return loss

def ce_dice(input, target, weight=None):
    ce_loss = cross_entropy(input, target)
    dice_loss_ = dice_loss(input, target)
    loss = 0.5 * ce_loss + 0.5 * dice_loss_
    return loss

def dice(input, target, weight=None):
    dice_loss_ = dice_loss(input, target)
    return dice_loss_

def ce2_dice1(input, target, weight=None):
    ce_loss = cross_entropy(input, target)
    dice_loss_ = dice_loss(input, target)
    loss = ce_loss + 0.5 * dice_loss_
    return loss

def ce1_dice2(input, target, weight=None):
    ce_loss = cross_entropy(input, target)
    dice_loss_ = dice_loss(input, target)
    loss = 0.5 * ce_loss +  dice_loss_
    return loss

def ce_scl(input, target, weight=None):
    ce_loss = cross_entropy(input, target)
    dice_loss_ = dice_loss(input, target)
    loss = 0.5 * ce_loss + 0.5 * dice_loss_
    return loss


def weighted_BCE_logits(logit_pixel, truth_pixel, weight_pos=0.25, weight_neg=0.75):
    logit = logit_pixel.view(-1)
    truth = truth_pixel.view(-1)
    assert (logit.shape == truth.shape)

    loss = F.binary_cross_entropy_with_logits(logit.float(), truth.float(), reduction='none')

    pos = (truth > 0.5).float()
    neg = (truth < 0.5).float()
    pos_num = pos.sum().item() + 1e-12
    neg_num = neg.sum().item() + 1e-12
    loss = (weight_pos * pos * loss / pos_num + weight_neg * neg * loss / neg_num).sum()

    return loss

class ChangeSimilarity(nn.Module):
    """input: x1, x2 multi-class predictions, c = class_num
       label_change: changed part
    """

    def __init__(self, reduction='mean'):
        super(ChangeSimilarity, self).__init__()
        self.loss_f = nn.CosineEmbeddingLoss(margin=0., reduction=reduction)

    def forward(self, x1, x2, label_change):
        b, c, h, w = x1.size()
        x1 = F.softmax(x1, dim=1)
        x2 = F.softmax(x2, dim=1)
        x1 = x1.permute(0, 2, 3, 1)
        x2 = x2.permute(0, 2, 3, 1)
        x1 = torch.reshape(x1, [b * h * w, c])
        x2 = torch.reshape(x2, [b * h * w, c])

        label_unchange = ~label_change.bool()
        target = label_unchange.float()
        target = target - label_change.float()
        target = torch.reshape(target, [b * h * w])

        loss = self.loss_f(x1, x2, target)
        return loss

def hybrid_loss(predictions, target, weight=[0,2,0.2,0.2,0.2,0.2]):
    """Calculating the loss"""
    loss = 0

    # gamma=0, alpha=None --> CE
    # focal = FocalLoss(gamma=0, alpha=None)
    # ssim = SSIM()

    for i,prediction in enumerate(predictions):

        bce = cross_entropy(prediction, target)
        dice = dice_loss(prediction, target)
        # ssimloss = ssim(prediction, target)
        loss += weight[i]*(bce + dice) #- ssimloss

    return loss

class BCL(nn.Module):
    """
    batch-balanced contrastive loss
    no-change,1
    change,-1
    """
    def __init__(self, margin=2.0):
        super(BCL, self).__init__()
        self.margin = margin

    def forward(self, distance, label):
        label[label == 1] = -1
        label[label == 0] = 1

        mask = (label != 255).float()
        distance = distance * mask

        pos_num = torch.sum((label==1).float())+0.0001
        neg_num = torch.sum((label==-1).float())+0.0001

        loss_1 = torch.sum((1+label) / 2 * torch.pow(distance, 2)) /pos_num
        loss_2 = torch.sum((1-label) / 2 *
            torch.pow(torch.clamp(self.margin - distance, min=0.0), 2)
        ) / neg_num
        loss = loss_1 + loss_2
        return loss