File size: 18,629 Bytes
8b04570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import torch
import torch.optim as optim
import data as Data
import models as Model
import torch.nn as nn
import argparse
import logging
import core.logger as Logger
import os
import numpy as np
from misc.metric_tools import ConfuseMatrixMeter
from models.loss import *
from collections import OrderedDict
import core.metrics as Metrics
from misc.torchutils import get_scheduler, save_network

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, default='./config/whu/whu_test.json',
                        help='JSON file for configuration')
    parser.add_argument('--phase', type=str, default='test',
                        choices=['train', 'test'], help='Run either train(training + validation) or testing',)
    parser.add_argument('--gpu_ids', type=str, default=None)
    parser.add_argument('-log_eval', action='store_true')

    args = parser.parse_args()
    opt = Logger.parse(args)

    opt = Logger.dict_to_nonedict(opt)

    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    Logger.setup_logger(logger_name=None, root=opt['path_cd']['log'], phase='train',
                        level=logging.INFO, screen=True)
    Logger.setup_logger(logger_name='test', root=opt['path_cd']['log'], phase='test',
                        level=logging.INFO)
    logger = logging.getLogger('base')
    logger.info(Logger.dict2str(opt))

    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train' and args.phase != 'test':
            print("Create [train] change-detection dataloader")
            train_set = Data.create_cd_dataset(dataset_opt=dataset_opt, phase=phase)
            train_loader = Data.create_cd_dataloader(train_set, dataset_opt, phase)
            opt['len_train_dataloader'] = len(train_loader)

        elif phase == 'val' and args.phase != 'test':
            print("Create [val] change-detection dataloader")
            val_set = Data.create_cd_dataset(dataset_opt=dataset_opt, phase=phase)
            val_loader = Data.create_cd_dataloader(val_set, dataset_opt, phase)
            opt['len_val_dataloader'] = len(val_loader)

        elif phase == 'test' and args.phase == 'test':
            print("Create [test] change-detection dataloader")
            test_set = Data.create_cd_dataset(dataset_opt=dataset_opt, phase=phase)
            test_loader = Data.create_cd_dataloader(test_set, dataset_opt, phase)
            opt['len_test_dataloader'] = len(test_loader)

    logger.info('Initial Dataset Finished')
    cd_model = Model.create_CD_model(opt)

    if opt['model']['loss'] == 'ce_dice':
        loss_fun = ce_dice
    elif opt['model']['loss'] == 'ce':
        loss_fun = cross_entropy

    if opt['train']["optimizer"]["type"] == 'adam':
        optimer = optim.Adam(cd_model.parameters(), lr=opt['train']["optimizer"]["lr"])
    elif opt['train']["optimizer"]["type"] == 'adamw':
        optimer = optim.AdamW(cd_model.parameters(), lr=opt['train']["optimizer"]["lr"])

    device = torch.device('cuda' if opt['gpu_ids'] is not None else 'cpu')
    cd_model.to(device)
    if len(opt['gpu_ids']) > 0:
        cd_model = nn.DataParallel(cd_model)
    metric = ConfuseMatrixMeter(n_class=2)
    log_dict = OrderedDict()

    if opt['phase'] == 'train':
        best_mF1 = 0.0
        for current_epoch in range(0, opt['train']['n_epoch']):
            print("......Begin Training......")
            metric.clear()
            cd_model.train()
            train_result_path = '{}/train/{}'.format(opt['path_cd']['result'], current_epoch)
            os.makedirs(train_result_path, exist_ok=True)

            message = 'lr: %0.7f\n \n' % optimer.param_groups[0]['lr']
            logger.info(message)
            for current_step, train_data in enumerate(train_loader):
                train_im1 = train_data['A'].to(device)
                train_im2 = train_data['B'].to(device)
                pred_img = cd_model(train_im1, train_im2)
                gt = train_data['L'].to(device).long()
                train_loss = loss_fun(pred_img, gt)
                optimer.zero_grad()
                train_loss.backward()
                optimer.step()
                log_dict['loss'] = train_loss.item()

                G_pred = pred_img.detach()
                G_pred = torch.argmax(G_pred, dim=1)
                current_score = metric.update_cm(pr=G_pred.cpu().numpy(), gt=gt.detach().cpu().numpy())
                log_dict['running_acc'] = current_score.item()

                if current_step % opt['train']['train_print_iter'] == 0:
                    logs = log_dict
                    message = '[Training CD]. epoch: [%d/%d]. Itter: [%d/%d], CD_loss: %.5f, running_mf1: %.5f\n' % \
                              (current_epoch, opt['train']['n_epoch'] - 1, current_step, len(train_loader), logs['loss'],
                               logs['running_acc'])
                    logger.info(message)

                    out_dict = OrderedDict()
                    out_dict['pred_cm'] = torch.argmax(pred_img, dim=1, keepdim=False)
                    out_dict['gt_cm'] = gt
                    visuals = out_dict

                    img_mode = "grid"
                    if img_mode == "single":
                        img_A = Metrics.tensor2img(train_data['A'], out_type=np.uint8, min_max=(-1, 1))  # uint8
                        img_B = Metrics.tensor2img(train_data['B'], out_type=np.uint8, min_max=(-1, 1))  # uint8
                        gt_cm = Metrics.tensor2img(visuals['gt_cm'].unsqueeze(1).repeat(1, 3, 1, 1), out_type=np.uint8,
                                                   min_max=(0, 1))  # uint8
                        pred_cm = Metrics.tensor2img(visuals['pred_cm'].unsqueeze(1).repeat(1, 3, 1, 1), out_type=np.uint8,
                                                     min_max=(0, 1))  # uint8

                        Metrics.save_img(
                            img_A, '{}/img_A_e{}_b{}.png'.format(train_result_path, current_epoch, current_step))
                        Metrics.save_img(
                            img_B, '{}/img_B_e{}_b{}.png'.format(train_result_path, current_epoch, current_step))
                        Metrics.save_img(
                            pred_cm, '{}/img_pred_e{}_b{}.png'.format(train_result_path, current_epoch, current_step))
                        Metrics.save_img(
                            gt_cm, '{}/img_gt_e{}_b{}.png'.format(train_result_path, current_epoch, current_step))
                    else:
                        visuals['pred_cm'] = visuals['pred_cm'] * 2.0 - 1.0
                        visuals['gt_cm'] = visuals['gt_cm'] * 2.0 - 1.0
                        grid_img = torch.cat((train_data['A'].to(device),
                                              train_data['B'].to(device),
                                              visuals['pred_cm'].unsqueeze(1).repeat(1, 3, 1, 1),
                                              visuals['gt_cm'].unsqueeze(1).repeat(1, 3, 1, 1)),
                                             dim=0)
                        grid_img = Metrics.tensor2img(grid_img)  # uint8
                        Metrics.save_img(
                            grid_img,
                            '{}/img_A_B_pred_gt_e{}_b{}.png'.format(train_result_path, current_epoch, current_step))

            scores = metric.get_scores()
            epoch_acc = scores['mf1']
            log_dict['epoch_acc'] = epoch_acc.item()
            for k, v in scores.items():
                log_dict[k] = v
            logs = log_dict
            message = '[Training CD (epoch summary)]: epoch: [%d/%d]. epoch_mF1=%.5f \n' % \
                      (current_epoch, opt['train']['n_epoch'] - 1, logs['epoch_acc'])
            for k, v in logs.items():
                message += '{:s}: {:.4e} '.format(k, v)
            message += '\n'
            logger.info(message)

            metric.clear()

            cd_model.eval()
            with torch.no_grad():
                if current_epoch % opt['train']['val_freq'] == 0:
                    val_result_path = '{}/val/{}'.format(opt['path_cd']['result'], current_epoch)
                    os.makedirs(val_result_path, exist_ok=True)

                    for current_step, val_data in enumerate(val_loader):
                        val_img1 = val_data['A'].to(device)
                        val_img2 = val_data['B'].to(device)
                        pred_img = cd_model(val_img1, val_img2)
                        gt = val_data['L'].to(device).long()
                        val_loss = loss_fun(pred_img, gt)
                        log_dict['loss'] = val_loss.item()

                        G_pred = pred_img.detach()
                        G_pred = torch.argmax(G_pred, dim=1)
                        current_score = metric.update_cm(pr=G_pred.cpu().numpy(), gt=gt.detach().cpu().numpy())
                        log_dict['running_acc'] = current_score.item()

                        if current_step % opt['train']['val_print_iter'] == 0:
                            logs = log_dict
                            message = '[Validation CD]. epoch: [%d/%d]. Itter: [%d/%d], running_mf1: %.5f\n' % \
                                      (current_epoch, opt['train']['n_epoch'] - 1, current_step, len(val_loader), logs['running_acc'])
                            logger.info(message)

                            out_dict = OrderedDict()
                            out_dict['pred_cm'] = torch.argmax(pred_img, dim=1, keepdim=False)
                            out_dict['gt_cm'] = gt
                            visuals = out_dict

                            img_mode = "single"
                            if img_mode == "single":
                                img_A = Metrics.tensor2img(val_data['A'], out_type=np.uint8, min_max=(-1, 1))  # uint8
                                img_B = Metrics.tensor2img(val_data['B'], out_type=np.uint8, min_max=(-1, 1))  # uint8
                                gt_cm = Metrics.tensor2img(visuals['gt_cm'].unsqueeze(1).repeat(1, 3, 1, 1),
                                                           out_type=np.uint8, min_max=(0, 1))  # uint8
                                pred_cm = Metrics.tensor2img(visuals['pred_cm'].unsqueeze(1).repeat(1, 3, 1, 1),
                                                             out_type=np.uint8, min_max=(0, 1))  # uint8

                                Metrics.save_img(
                                    img_A, '{}/img_A_e{}_b{}.png'.format(val_result_path, current_epoch, current_step))
                                Metrics.save_img(
                                    img_B, '{}/img_B_e{}_b{}.png'.format(val_result_path, current_epoch, current_step))
                                Metrics.save_img(
                                    pred_cm, '{}/img_pred_e{}_b{}.png'.format(val_result_path, current_epoch, current_step))
                                Metrics.save_img(
                                    gt_cm, '{}/img_gt_e{}_b{}.png'.format(val_result_path, current_epoch, current_step))
                            else:
                                visuals['pred_cm'] = visuals['pred_cm'] * 2.0 - 1.0
                                visuals['gt_cm'] = visuals['gt_cm'] * 2.0 - 1.0
                                grid_img = torch.cat((val_data['A'].to(device),
                                                      val_data['B'].to(device),
                                                      visuals['pred_cm'].unsqueeze(1).repeat(1, 3, 1, 1),
                                                      visuals['gt_cm'].unsqueeze(1).repeat(1, 3, 1, 1)),
                                                     dim=0)
                                grid_img = Metrics.tensor2img(grid_img)  # uint8
                                Metrics.save_img(
                                    grid_img,'{}/img_A_B_pred_gt_e{}_b{}.png'.format(val_result_path, current_epoch, current_step))

                    scores = metric.get_scores()
                    epoch_acc = scores['mf1']
                    log_dict['epoch_acc'] = epoch_acc.item()
                    for k, v in scores.items():
                        log_dict[k] = v
                    logs = log_dict
                    message = '[Validation CD (epoch summary)]: epoch: [%d/%d]. epoch_mF1=%.5f \n' % \
                              (current_epoch, opt['train']['n_epoch'], logs['epoch_acc'])
                    for k, v in logs.items():
                        message += '{:s}: {:.4e} '.format(k, v)
                    message += '\n'
                    logger.info(message)

                    if logs['epoch_acc'] > best_mF1:
                        is_best_model = True
                        best_mF1 = logs['epoch_acc']
                        logger.info('[Validation CD] Best model updated. Saving the models (current + best) and training states.')
                    else:
                        is_best_model = False
                        logger.info('[Validation CD] Saving the current cd model and training states.')
                    logger.info('--- Proceed To The Next Epoch ----\n \n')

                    save_network(opt, current_epoch, cd_model, optimer, is_best_model)
                    metric.clear()

            get_scheduler(optimizer=optimer, args=opt['train']).step()
        logger.info('End of training.')

    else:
        logger.info('Begin model evaluation (testing phase)')
        test_result_path = '{}/test/'.format(opt['path_cd']['result'])
        os.makedirs(test_result_path, exist_ok=True)
        logger_test = logging.getLogger('test')

        load_path = opt["path_cd"]["resume_state"]
        print(load_path)
        if load_path is not None:
            logger.info('Loading pre-trained change detection model [{:s}] ...'.format(load_path))
            gen_path = '{}_gen.pth'.format(load_path)
            opt_path = '{}_opt.pth'.format(load_path)

            cd_model = Model.create_CD_model(opt)
            cpkt_state = torch.load(gen_path)
            missing_keys, unexpected_keys = cd_model.load_state_dict(cpkt_state, strict=False)
            print(missing_keys)
            cd_model.to(device)
            metric.clear()
            cd_model.eval()
            with torch.no_grad():
                for current_step, test_data in enumerate(test_loader):
                    test_img1 = test_data['A'].to(device)
                    test_img2 = test_data['B'].to(device)
                    pred_img = cd_model(test_img1, test_img2)

                    if isinstance(pred_img, tuple):
                        pred_img = pred_img[0]

                    gt = test_data['L'].to(device).long()

                    G_pred = pred_img.detach()
                    G_pred = torch.argmax(G_pred, dim=1)
                    current_score = metric.update_cm(pr=G_pred.cpu().numpy(), gt=gt.detach().cpu().numpy())
                    log_dict['running_acc'] = current_score.item()

                    logs = log_dict
                    message = '[Test Change Detection] Iteration: [%d/%d], current mF1: %.5f\n' % \
                              (current_step, len(test_loader), logs['running_acc'])
                    logger_test.info(message)

                    out_dict = OrderedDict()
                    out_dict['pred_cm'] = torch.argmax(pred_img, dim=1, keepdim=False)
                    out_dict['gt_cm'] = gt
                    visuals = out_dict

                    img_mode = 'single'
                    if img_mode == 'single':
                        visuals['pred_cm'] = visuals['pred_cm'] * 2.0 - 1.0
                        visuals['gt_cm'] = visuals['gt_cm'] * 2.0 - 1.0
                        img_A = Metrics.tensor2img(test_data['A'], out_type=np.uint8, min_max=(-1, 1))  # uint8
                        img_B = Metrics.tensor2img(test_data['B'], out_type=np.uint8, min_max=(-1, 1))  # uint8
                        gt_cm = Metrics.tensor2img(visuals['gt_cm'].unsqueeze(1).repeat(1, 3, 1, 1),
                                                   out_type=np.uint8, min_max=(0, 1))  # uint8
                        pred_cm = Metrics.tensor2img(visuals['pred_cm'].unsqueeze(1).repeat(1, 3, 1, 1),
                                                     out_type=np.uint8, min_max=(0, 1))  # uint8

                        Metrics.save_img(
                            img_A, '{}/img_A_{}.png'.format(test_result_path, current_step))
                        Metrics.save_img(
                            img_B, '{}/img_B_{}.png'.format(test_result_path, current_step))
                        Metrics.save_img(
                            pred_cm, '{}/img_pred_cm{}.png'.format(test_result_path, current_step))
                        Metrics.save_img(
                            gt_cm, '{}/img_gt_cm{}.png'.format(test_result_path, current_step))
                    else:
                        visuals['pred_cm'] = visuals['pred_cm'] * 2.0 - 1.0
                        visuals['gt_cm'] = visuals['gt_cm'] * 2.0 - 1.0
                        grid_img = torch.cat((test_data['A'],
                                              test_data['B'],
                                              visuals['pred_cm'].unsqueeze(1).repeat(1, 3, 1, 1),
                                              visuals['gt_cm'].unsqueeze(1).repeat(1, 3, 1, 1)),
                                             dim=0)
                        grid_img = Metrics.tensor2img(grid_img)  # uint8
                        Metrics.save_img(
                            grid_img, '{}/img_A_B_pred_gt_{}.png'.format(test_result_path, current_step))

                scores = metric.get_scores()
                epoch_acc = scores['mf1']
                log_dict['epoch_acc'] = epoch_acc.item()
                for k, v in scores.items():
                    log_dict[k] = v
                logs = log_dict
                message = '[Test Change Detection Summary]: Test mF1=%.5f \n' % \
                          (logs['epoch_acc'])
                for k, v in logs.items():
                    message += '{:s}: {:.4e} '.format(k, v)
                    message += '\n'
                logger_test.info(message)
                logger.info('Testing finished...')