import numpy as np from scipy import stats import math class AverageMeter(object): def __init__(self): self.initialized = False self.val = None self.avg = None self.sum = None self.count = None def initialize(self, val, weight): self.val = val self.avg = val self.sum = val * weight self.count = weight self.initialized = True def update(self, val, weight=1): if not self.initialized: self.initialize(val, weight) else: self.add(val, weight) def add(self, val, weight): self.val = val self.sum += val * weight self.count += weight self.avg = self.sum / self.count def value(self): return self.val def average(self): return self.avg def get_scores(self): scores_dict = cm2score(self.sum) return scores_dict def clear(self): self.initialized = False class ConfuseMatrixMeter(AverageMeter): def __init__(self, n_class): super(ConfuseMatrixMeter, self).__init__() self.n_class = n_class def update_cm(self, pr, gt, weight=1): val = get_confuse_matrix(num_classes=self.n_class, label_gts=gt, label_preds=pr) self.update(val, weight) current_score = cm2F1(val) return current_score def get_scores(self): scores_dict = cm2score(self.sum) return scores_dict def harmonic_mean(xs): harmonic_mean = len(xs) / sum((x+1e-6)**-1 for x in xs) return harmonic_mean def cm2F1(confusion_matrix): hist = confusion_matrix n_class = hist.shape[0] tp = np.diag(hist) sum_a1 = hist.sum(axis=1) sum_a0 = hist.sum(axis=0) acc = tp.sum() / (hist.sum() + np.finfo(np.float32).eps) recall = tp / (sum_a1 + np.finfo(np.float32).eps) precision = tp / (sum_a0 + np.finfo(np.float32).eps) F1 = 2 * recall * precision / (recall + precision + np.finfo(np.float32).eps) mean_F1 = np.nanmean(F1) return mean_F1 def cm2score(confusion_matrix): hist = confusion_matrix n_class = hist.shape[0] if n_class > 2: hist_fg = hist[1:, 1:] c2hist = np.zeros((2, 2)) c2hist[0][0] = hist[0][0] c2hist[0][1] = hist.sum(1)[0] - hist[0][0] c2hist[1][0] = hist.sum(0)[0] - hist[0][0] c2hist[1][1] = hist_fg.sum() hist_n0 = hist.copy() hist_n0[0][0] = 0 kappa_n0 = cal_kappa(hist_n0) iu_scd = np.nan_to_num(np.diag(c2hist) / (c2hist.sum(1) + c2hist.sum(0) - np.diag(c2hist))) IoU_fg = iu_scd[1] IoU_mean = (iu_scd[0] + iu_scd[1]) / 2 Sek = (kappa_n0 * math.exp(IoU_fg)) / math.e pixel_sum = hist.sum() change_pred_sum = pixel_sum - hist.sum(1)[0].sum() change_label_sum = pixel_sum - hist.sum(0)[0].sum() change_ratio = change_label_sum / pixel_sum SC_TP = np.diag(hist[1:, 1:]).sum() SC_Precision = np.nan_to_num(SC_TP / change_pred_sum) + np.finfo(np.float32).eps SC_Recall = np.nan_to_num(SC_TP / change_label_sum) + np.finfo(np.float32).eps Fscd = stats.hmean([SC_Precision, SC_Recall]) tp = np.diag(hist) sum_a1 = hist.sum(axis=1) sum_a0 = hist.sum(axis=0) acc = tp.sum() / (hist.sum() + np.finfo(np.float32).eps) recall = tp / (sum_a1 + np.finfo(np.float32).eps) precision = tp / (sum_a0 + np.finfo(np.float32).eps) F1 = 2*recall * precision / (recall + precision + np.finfo(np.float32).eps) mean_F1 = np.nanmean(F1) iu = tp / (sum_a1 + hist.sum(axis=0) - tp + np.finfo(np.float32).eps) mean_iu = np.nanmean(iu) freq = sum_a1 / (hist.sum() + np.finfo(np.float32).eps) fwavacc = (freq[freq > 0] * iu[freq > 0]).sum() cls_iou = dict(zip(['iou_'+str(i) for i in range(n_class)], iu)) cls_precision = dict(zip(['precision_'+str(i) for i in range(n_class)], precision)) cls_recall = dict(zip(['recall_'+str(i) for i in range(n_class)], recall)) cls_F1 = dict(zip(['F1_'+str(i) for i in range(n_class)], F1)) if n_class > 2: score_dict = {'acc': acc, 'miou': mean_iu, 'mf1':mean_F1, 'SCD_Sek':Sek, 'Fscd':Fscd, 'SCD_IoU_mean':IoU_mean} else: score_dict = {'acc': acc, 'miou': mean_iu, 'mf1':mean_F1} score_dict.update(cls_iou) score_dict.update(cls_F1) score_dict.update(cls_precision) score_dict.update(cls_recall) return score_dict def get_confuse_matrix(num_classes, label_gts, label_preds): def __fast_hist(label_gt, label_pred): mask = (label_gt >= 0) & (label_gt < num_classes) hist = np.bincount(num_classes * label_gt[mask].astype(int) + label_pred[mask], minlength=num_classes**2).reshape(num_classes, num_classes) return hist confusion_matrix = np.zeros((num_classes, num_classes)) for lt, lp in zip(label_gts, label_preds): confusion_matrix += __fast_hist(lt.flatten(), lp.flatten()) return confusion_matrix def get_mIoU(num_classes, label_gts, label_preds): confusion_matrix = get_confuse_matrix(num_classes, label_gts, label_preds) score_dict = cm2score(confusion_matrix) return score_dict['miou'] def fast_hist(a, b, n): k = (a >= 0) & (a < n) return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n) def get_hist(image, label, num_class): hist = np.zeros((num_class, num_class)) hist += fast_hist(image.flatten(), label.flatten(), num_class) return hist def cal_kappa(hist): if hist.sum() == 0: po = 0 pe = 1 kappa = 0 else: po = np.diag(hist).sum() / hist.sum() pe = np.matmul(hist.sum(1), hist.sum(0).T) / hist.sum() ** 2 if pe == 1: kappa = 0 else: kappa = (po - pe) / (1 - pe) return kappa def SCDD_eval_all(preds, labels, num_class): hist = np.zeros((num_class, num_class)) for pred, label in zip(preds, labels): infer_array = np.array(pred) unique_set = set(np.unique(infer_array)) assert unique_set.issubset(set([0, 1, 2, 3, 4, 5, 6])), "unrecognized label number" label_array = np.array(label) assert infer_array.shape == label_array.shape, "The size of prediction and target must be the same" hist += get_hist(infer_array, label_array, num_class) hist_fg = hist[1:, 1:] c2hist = np.zeros((2, 2)) c2hist[0][0] = hist[0][0] c2hist[0][1] = hist.sum(1)[0] - hist[0][0] c2hist[1][0] = hist.sum(0)[0] - hist[0][0] c2hist[1][1] = hist_fg.sum() hist_n0 = hist.copy() hist_n0[0][0] = 0 kappa_n0 = cal_kappa(hist_n0) iu = np.diag(c2hist) / (c2hist.sum(1) + c2hist.sum(0) - np.diag(c2hist)) IoU_fg = iu[1] IoU_mean = (iu[0] + iu[1]) / 2 Sek = (kappa_n0 * math.exp(IoU_fg)) / math.e pixel_sum = hist.sum() change_pred_sum = pixel_sum - hist.sum(1)[0].sum() change_label_sum = pixel_sum - hist.sum(0)[0].sum() SC_TP = np.diag(hist[1:, 1:]).sum() SC_Precision = SC_TP / change_pred_sum SC_Recall = SC_TP / change_label_sum Fscd = stats.hmean([SC_Precision, SC_Recall]) return Fscd, IoU_mean, Sek