Yanisadel commited on
Commit
1de1e22
·
verified ·
1 Parent(s): ddec6ec

Delete sct.py

Browse files
Files changed (1) hide show
  1. sct.py +0 -756
sct.py DELETED
@@ -1,756 +0,0 @@
1
- import math
2
- from dataclasses import dataclass
3
- from typing import Optional, Tuple
4
-
5
- import numpy as np
6
- import torch
7
- import torch.nn as nn
8
- import torch.nn.functional as F # noqa: N812
9
- from transformers import PretrainedConfig, PreTrainedModel
10
-
11
-
12
- class GeLU(nn.Module):
13
- def __init__(self) -> None:
14
- """
15
- This is the gelu implementation from the original ESM repo.
16
- Using F.gelu yields subtly wrong results.
17
- """
18
- super().__init__()
19
-
20
- def forward(self, x: torch.Tensor) -> torch.Tensor:
21
- return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
22
-
23
-
24
- @dataclass
25
- class RotaryEmbeddingConfig:
26
- """
27
- Parameters to initialize the RotaryEmbedding layer. The rescaling factor allows
28
- to adapt the rotary embeddings to larger lengths than what was used for training.
29
- One of this strategy is presented in the Yarn paper: https://arxiv.org/pdf/2309.00071.pdf. # noqa
30
- Args:
31
- """
32
-
33
- rescaling_factor: Optional[float]
34
-
35
-
36
- class RotaryEmbedding(torch.nn.Module):
37
- """
38
- Rotary position embeddings based on those in
39
- [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer).
40
- Query and keys are transformed by rotation
41
- matrices which depend on their relative positions.
42
- """
43
-
44
- def __init__(self, dim: int, rotary_embedding_config: RotaryEmbeddingConfig):
45
- super().__init__()
46
-
47
- # Extract argument from the config
48
- self.rescaling_factor = rotary_embedding_config.rescaling_factor
49
- self.upper_freq = 10000
50
- self.dim = dim
51
-
52
- self._seq_len_cached = None
53
- self._cos_cached = None
54
- self._sin_cached = None
55
-
56
- def _apply_rotary_pos_emb(
57
- self,
58
- heads: torch.Tensor,
59
- cos: torch.Tensor,
60
- sin: torch.Tensor,
61
- ) -> torch.Tensor:
62
- """ """
63
- x_first, x_second = (
64
- heads[..., : heads.shape[-1] // 2],
65
- heads[..., heads.shape[-1] // 2 :],
66
- )
67
-
68
- first_part = x_first * cos - x_second * sin
69
- second_part = x_second * cos + x_first * sin
70
-
71
- return torch.cat((first_part, second_part), dim=-1)
72
-
73
- def _compute_cos_sin_tables(
74
- self, x: torch.Tensor, inv_freq: torch.Tensor, seq_dimension: int = 2
75
- ) -> tuple[torch.Tensor, torch.Tensor]:
76
- seq_len = x.shape[seq_dimension]
77
- # Reset the tables if the sequence length has changed,
78
- # or if we're on a new device (possibly due to tracing for instance)
79
- self._seq_len_cached = seq_len
80
- t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(inv_freq)
81
- # freqs = torch.outer(t, inv_freq)
82
- freqs = torch.einsum("i, j -> ij", t, inv_freq)
83
-
84
- self._cos_cached = torch.cos(freqs)[None, :, None, :]
85
- self._sin_cached = torch.sin(freqs)[None, :, None, :]
86
- # emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
87
-
88
- # self._cos_cached = emb.cos()[None, None, :, :]
89
- # self._sin_cached = emb.sin()[None, None, :, :]
90
-
91
- return self._cos_cached, self._sin_cached
92
-
93
- def forward(
94
- self, q: torch.Tensor, k: torch.Tensor
95
- ) -> Tuple[torch.Tensor, torch.Tensor]:
96
- if self.rescaling_factor is None:
97
- inv_freq = 1.0 / (
98
- self.upper_freq ** (torch.arange(0, self.dim, 2).float() / self.dim)
99
- )
100
- else:
101
- updated_base = self.upper_freq * (
102
- self.rescaling_factor ** (self.dim / (self.dim - 2))
103
- )
104
- inv_freq = 1.0 / (
105
- updated_base ** (torch.arange(0, self.dim, 2).float() / self.dim)
106
- )
107
-
108
- self._cos_cached, self._sin_cached = self._compute_cos_sin_tables(
109
- q,
110
- inv_freq,
111
- seq_dimension=-3,
112
- )
113
-
114
- return (
115
- self._apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
116
- self._apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
117
- )
118
-
119
-
120
- class ResidualConvBlock(nn.Module):
121
- """
122
- Conv Block with Residual connection.
123
- """
124
-
125
- def __init__(self, dim_in: int, dim_out: int, seq_len: int, kernel_size: int = 1):
126
- super().__init__()
127
- self.conv_block = ConvBlock(
128
- dim_in=dim_in, dim_out=dim_out, seq_len=seq_len, kernel_size=kernel_size
129
- )
130
-
131
- def forward(self, x: torch.Tensor) -> torch.Tensor:
132
- y = self.conv_block(x)
133
- return x.reshape(y.shape) + y
134
-
135
-
136
- class ConvBlock(nn.Module):
137
- """
138
- Conv Block.
139
- """
140
-
141
- def __init__(self, dim_in: int, dim_out: int, seq_len: int, kernel_size: int = 1):
142
- super().__init__()
143
- self.conv = nn.Conv1d(
144
- in_channels=dim_in,
145
- out_channels=dim_out,
146
- kernel_size=kernel_size,
147
- padding="same",
148
- )
149
- self.layer_norm = nn.LayerNorm(seq_len, eps=1e-5)
150
-
151
- def forward(self, x: torch.Tensor) -> torch.Tensor:
152
- x = self.layer_norm(x)
153
- x = x.reshape(x.shape[0], x.shape[1], -1)
154
- x = self.conv(x)
155
- x = F.gelu(x, approximate="tanh")
156
- return x
157
-
158
-
159
- class ResidualDeConvBlock(nn.Module):
160
- """
161
- Conv Block with Residual connection.
162
- """
163
-
164
- def __init__(
165
- self,
166
- dim_in: int,
167
- dim_out: int,
168
- seq_len: int,
169
- kernel_size: int = 1,
170
- stride: int = 1,
171
- ):
172
- super().__init__()
173
- self.deconv_block = DeConvBlock(
174
- dim_in=dim_in,
175
- dim_out=dim_out,
176
- seq_len=seq_len,
177
- kernel_size=kernel_size,
178
- stride=stride,
179
- )
180
-
181
- def forward(self, x: torch.Tensor) -> torch.Tensor:
182
- y = self.deconv_block(x)
183
- return x.reshape(y.shape) + y
184
-
185
-
186
- class DeConvBlock(nn.Module):
187
- """
188
- DeConv Block.
189
- """
190
-
191
- def __init__(
192
- self,
193
- dim_in: int,
194
- dim_out: int,
195
- seq_len: int,
196
- kernel_size: int = 1,
197
- stride: int = 1,
198
- ):
199
- super().__init__()
200
- self.deconv = nn.ConvTranspose1d(
201
- in_channels=dim_in,
202
- out_channels=dim_out,
203
- kernel_size=kernel_size,
204
- stride=stride,
205
- padding=0,
206
- )
207
- self.layer_norm = nn.LayerNorm(seq_len)
208
- self.kernel_size = kernel_size
209
-
210
- def forward(self, x: torch.Tensor) -> torch.Tensor:
211
- x = self.layer_norm(x)
212
- x = x.reshape(x.shape[0], x.shape[1], -1)
213
- x = self.deconv(x)
214
- if self.kernel_size == 5:
215
- # handle the special case where haiku
216
- # deconv removes padding automatically
217
- x = x[:, :, 1:-2]
218
- x = F.gelu(x, approximate="tanh")
219
- return x
220
-
221
-
222
- class SpatialEncoding(nn.Module):
223
- """
224
- Spatial coordinates encoding module
225
- """
226
-
227
- def __init__(
228
- self,
229
- embed_dim: int,
230
- num_scales: int = 10,
231
- sigma_min: float = 1.0,
232
- sigma_max: float = 10.0,
233
- ):
234
- super().__init__()
235
- self.num_scales = num_scales
236
- self.sigma_min = sigma_min
237
- self.sigma_max = sigma_max
238
- self.g = sigma_max / sigma_min
239
- self.scales = torch.linspace(sigma_min, sigma_max, num_scales)
240
- self.fc_layer = nn.Linear(embed_dim, embed_dim)
241
-
242
- def scale_specific_encoder(
243
- self, coordinates: torch.Tensor, scale: float
244
- ) -> torch.Tensor:
245
- x, y = coordinates[..., 0], coordinates[..., 1]
246
- constant = self.sigma_min * (self.g ** (scale / (self.num_scales - 1)))
247
- x_transform = torch.cos(x / constant)
248
- y_transform = torch.sin(y / constant)
249
- transformed_coordinates = torch.stack([x_transform, y_transform], dim=-1)
250
- return transformed_coordinates
251
-
252
- def forward(self, coordinates: torch.Tensor) -> torch.Tensor:
253
- transformed_coordinates = [
254
- self.scale_specific_encoder(coordinates, scale) for scale in self.scales
255
- ]
256
- transformed_coordinates = torch.cat(transformed_coordinates, dim=-1)
257
- return self.fc_layer(transformed_coordinates)
258
-
259
-
260
- class ConvTowerBlock(nn.Module):
261
- def __init__(
262
- self, dim_in: int, dim_out: int, seq_len: int, kernel_size: int, num_cells: int
263
- ) -> None:
264
- super().__init__()
265
- self.conv_layer = ConvBlock(
266
- dim_in=dim_in, dim_out=dim_out, seq_len=seq_len, kernel_size=kernel_size
267
- )
268
- self.res_conv = ResidualConvBlock(
269
- dim_in=dim_out, dim_out=dim_out, seq_len=seq_len, kernel_size=1
270
- )
271
- self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2)
272
- self.num_cells = num_cells
273
-
274
- def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
275
- residual = x
276
- x = x.reshape(x.shape[0], x.shape[1], self.num_cells, -1) # noqa: FKA100
277
- x = self.conv_layer(x)
278
- x = x.reshape((x.shape[0], x.shape[1], self.num_cells, -1))
279
- x = self.res_conv(x)
280
- x = self.avg_pool(x)
281
- return x, residual
282
-
283
-
284
- class DeConvTowerBlock(nn.Module):
285
- def __init__(
286
- self,
287
- dim_in: int,
288
- dim_out: int,
289
- kernel_size: int,
290
- seq_len: int,
291
- stride: int = 2,
292
- num_cells: int = 1,
293
- ):
294
- super().__init__()
295
- self.deconv_block = DeConvBlock(
296
- dim_in=dim_in,
297
- dim_out=dim_out,
298
- seq_len=seq_len,
299
- kernel_size=kernel_size,
300
- stride=stride,
301
- )
302
- self.res_deconv_block = ResidualDeConvBlock(
303
- dim_in=dim_out, dim_out=dim_out, seq_len=seq_len * 2, kernel_size=1
304
- )
305
- self.num_cells = num_cells
306
-
307
- def forward(self, x: torch.Tensor, res: torch.Tensor) -> torch.Tensor:
308
- x = x.reshape((x.shape[0], x.shape[1], self.num_cells, -1))
309
- x = self.deconv_block(x)
310
- x = x.reshape((x.shape[0], x.shape[1], self.num_cells, -1))
311
- x = self.res_deconv_block(x)
312
-
313
- x = x + res
314
- return x
315
-
316
-
317
- class MultiHeadAttention(nn.Module):
318
- def __init__(
319
- self,
320
- num_heads: int,
321
- key_size: int,
322
- rotary_embedding_config: Optional[RotaryEmbeddingConfig] = None,
323
- add_bias_kv: bool = False,
324
- value_size: Optional[int] = None,
325
- model_size: Optional[int] = None,
326
- name: Optional[str] = None,
327
- ):
328
- super().__init__()
329
- if not model_size:
330
- model_size = key_size
331
- if not value_size:
332
- value_size = key_size
333
- self.model_size = model_size
334
- self.key_size = key_size
335
- self.value_size = value_size
336
- self.add_bias_kv = add_bias_kv
337
- self.name = name
338
- self.num_heads = num_heads
339
- self._rotary_embedding_config = rotary_embedding_config
340
-
341
- self.w_k = nn.Linear(self.model_size, self.num_heads * self.key_size)
342
- self.w_q = nn.Linear(self.model_size, self.num_heads * self.key_size)
343
- self.w_v = nn.Linear(self.model_size, self.num_heads * self.value_size)
344
- self.output = nn.Linear(self.num_heads * self.value_size, self.model_size)
345
- if self._rotary_embedding_config:
346
- self._rotary_embedding = RotaryEmbedding(
347
- self.key_size, self._rotary_embedding_config
348
- )
349
-
350
- def apply_rotary_embeddings(
351
- self,
352
- query: torch.Tensor,
353
- key: torch.Tensor,
354
- ) -> tuple[torch.Tensor, torch.Tensor]:
355
- """ """
356
- query, key = self._rotary_embedding(query, key)
357
- return query, key
358
-
359
- def forward(
360
- self,
361
- query: torch.Tensor,
362
- key: torch.Tensor,
363
- value: torch.Tensor,
364
- attention_mask: torch.Tensor | None = None,
365
- attention_weight_bias: torch.Tensor | None = None,
366
- ) -> dict[str, torch.Tensor]:
367
- """
368
- Returns:
369
- dictionary containing attention weights
370
- and outputs.
371
- """
372
- key_heads = self.w_k(key).reshape(
373
- (*key.shape[:-1], self.num_heads, self.key_size)
374
- )
375
- query_heads = self.w_q(query).reshape(
376
- (*query.shape[:-1], self.num_heads, self.key_size)
377
- )
378
- value_heads = self.w_v(value).reshape(
379
- (*value.shape[:-1], self.num_heads, self.value_size)
380
- )
381
- if self._rotary_embedding_config:
382
- query_heads, key_heads = self.apply_rotary_embeddings(
383
- query_heads, key_heads
384
- )
385
- attention_weights = torch.einsum(
386
- "...thd, ...Thd -> ...htT", query_heads, key_heads
387
- )
388
- sqrt_key_size = np.sqrt(self.key_size)
389
- attention_weights = attention_weights / sqrt_key_size
390
- if attention_mask:
391
- attention_weights = torch.where(attention_mask, attention_weights, -1e30)
392
- if attention_weight_bias:
393
- attention_weights = F.softmax(
394
- attention_weights + attention_weight_bias, dim=-1
395
- )
396
- else:
397
- attention_weights = F.softmax(attention_weights, dim=-1)
398
- value_out = torch.einsum(
399
- "...htT, ...Thd->...thd", attention_weights, value_heads
400
- )
401
- value_out = value_out.reshape((*value_out.shape[:-2], -1))
402
- embeddings = self.output(value_out)
403
-
404
- return {"attention_weights": attention_weights, "embeddings": embeddings}
405
-
406
-
407
- class SelfAttentionBlock(nn.Module):
408
- def __init__(
409
- self,
410
- num_heads: int,
411
- embed_dim: int,
412
- ffn_embed_dim: int,
413
- key_size: Optional[int] = None,
414
- add_bias_kv: bool = False,
415
- add_bias_fnn: bool = True,
416
- ffn_activation_name: str = "gelu-no-approx",
417
- use_glu_in_ffn: bool = False,
418
- layer_norm_eps: float = 1e-5, # this is the default haiku value
419
- pre_layer_norm: bool = True,
420
- name: Optional[str] = None,
421
- rotary_embedding_config: Optional[RotaryEmbeddingConfig] = None,
422
- ):
423
- super().__init__()
424
- if key_size is None:
425
- if embed_dim % num_heads != 0:
426
- raise ValueError(
427
- f"The embedding dimension should be divisible by the number of "
428
- f"heads, however provided embedding dimension is {embed_dim} and "
429
- f"the number of heads is {num_heads}."
430
- )
431
- else:
432
- key_size = embed_dim // num_heads
433
-
434
- # Get ffn activation function
435
- self._pre_layer_norm = pre_layer_norm
436
- self._use_glu_in_fnn = use_glu_in_ffn
437
- # Define layers
438
- if use_glu_in_ffn:
439
- # user should multiply ffn_embed_dim by 2/3 when using GLU
440
- # to keep total number of parameters equal
441
- # see https://arxiv.org/pdf/2002.05202.pdf. for more details
442
- # we multiply by 2 here as the output will be split in 2 for GLU
443
- self.fc1 = nn.Linear(embed_dim, int(2 * ffn_embed_dim), bias=add_bias_fnn)
444
- else:
445
- self.fc1 = nn.Linear(embed_dim, ffn_embed_dim, bias=add_bias_fnn)
446
-
447
- self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_fnn)
448
-
449
- self.layer_norm_self_attention = nn.LayerNorm(
450
- embed_dim,
451
- )
452
- self.layer_norm_mlp = nn.LayerNorm(embed_dim)
453
- if ffn_activation_name == "swish":
454
- self._ffn_activation_fn = nn.SiLU()
455
- elif ffn_activation_name == "gelu-no-approx":
456
- self._ffn_activation_fn = nn.GeLU(approximate="tanh")
457
- else:
458
- self._ffn_activation_fn = getattr(torch.nn, ffn_activation_name)
459
-
460
- self.mha = MultiHeadAttention(
461
- num_heads=num_heads,
462
- key_size=key_size,
463
- add_bias_kv=add_bias_kv,
464
- model_size=embed_dim,
465
- name="self_attention",
466
- rotary_embedding_config=rotary_embedding_config,
467
- )
468
-
469
- def mlp(self, embed: torch.Tensor) -> torch.Tensor:
470
-
471
- if self._pre_layer_norm:
472
- x = self.layer_norm_mlp(embed)
473
- else:
474
- x = embed
475
-
476
- if self._use_glu_in_fnn:
477
- x = self.fc1(x)
478
- x1, x2 = torch.split(x, split_size_or_sections=x.shape[-1] // 2, dim=-1)
479
- x = self._ffn_activation_fn(x1) * x2
480
- else:
481
- x = self._ffn_activation_fn(self.fc1(x))
482
- x = self.fc2(x)
483
-
484
- if not self._pre_layer_norm:
485
- x = self.layer_norm_mlp(x + embed)
486
- return x
487
-
488
- def forward(
489
- self,
490
- x: torch.Tensor,
491
- attention_mask: torch.Tensor | None = None,
492
- attention_weight_bias: torch.Tensor | None = None,
493
- ) -> torch.Tensor:
494
-
495
- res = x
496
- if self._pre_layer_norm:
497
- x = self.layer_norm_self_attention(x)
498
-
499
- output = self.mha(
500
- x,
501
- x,
502
- x,
503
- attention_mask=attention_mask,
504
- attention_weight_bias=attention_weight_bias,
505
- )
506
-
507
- if not self._pre_layer_norm:
508
- output["embeddings"] = self.layer_norm_self_attention(
509
- output["embeddings"] + res
510
- )
511
-
512
- x = output["embeddings"]
513
- else:
514
- x = output["embeddings"]
515
- x = res + x
516
-
517
- # MLP
518
- if not self._pre_layer_norm:
519
- x = self.mlp(x)
520
- else:
521
- x = x + self.mlp(x)
522
-
523
- output["embeddings"] = x
524
- return output
525
-
526
-
527
- class LMHead(nn.Module):
528
- def __init__(
529
- self, dim_in: int, embed_dim: int, dim_out: int, num_hidden_layers: int
530
- ) -> None:
531
- """ """
532
- super().__init__()
533
- self.num_hidden_layers = num_hidden_layers
534
- self.linear_layers = nn.ModuleList([nn.Linear(dim_in, embed_dim)])
535
- self.linear_layers.extend(
536
- nn.ModuleList(
537
- [nn.Linear(embed_dim, embed_dim)] for _ in range(num_hidden_layers - 1)
538
- )
539
- )
540
- self.linear_out = nn.Linear(embed_dim, dim_out)
541
-
542
- def forward(self, x: torch.Tensor) -> torch.Tensor:
543
- res = x # noqa: F841
544
- x = F.gelu(x, approximate="tanh")
545
- for layer in self.linear_layers:
546
- x = layer(x)
547
- x = F.gelu(x, approximate="tanh")
548
- out = self.linear_out(x)
549
- return out
550
-
551
-
552
- @dataclass
553
- class sCTConfig(PretrainedConfig): # noqa: N801
554
- model_type = "sCT"
555
-
556
- def __init__(self, **kwargs): # type: ignore
557
- self.alphabet_size = kwargs.get("alphabet_size", 7)
558
- self.pad_token_id = kwargs.get("pad_token_id", 5)
559
- self.mask_token_id = kwargs.get("mask_token_id", 6)
560
- self.cell_len = kwargs.get("cell_len", 19968)
561
-
562
- self.num_downsamples = kwargs.get("num_downsamples", 8)
563
- self.attention_heads = kwargs.get("attention_heads", 16)
564
- self.key_size = kwargs.get("key_size", None)
565
- self.token_embed_dim = kwargs.get("token_embed_dim", 16)
566
-
567
- self.embed_dim = kwargs.get("embed_dim", 1024)
568
- self.ffn_embed_dim = kwargs.get("ffn_embed_dim", 2048)
569
- self.num_layers = kwargs.get("num_layers", 4)
570
- self.layer_norm_eps = kwargs.get("layer_norm_eps", 1e-5)
571
- self.interpolation_method = kwargs.get("interpolation_method", "nearest")
572
-
573
- # bad hack to satisfy cellnt_celltype_annotation.py:312
574
- self.max_positions: int = kwargs.get("max_positions", 20480)
575
- self.num_cells: int = kwargs.get("num_cells", 50)
576
- self.num_hidden_layers_head: int = kwargs.get("num_hidden_layers_head", 1)
577
-
578
- self.use_skip_connection: bool = kwargs.get("use_skip_connection", True)
579
-
580
- # logging
581
- self.use_gradient_checkpointing: bool = False
582
-
583
- # return
584
- self.embeddings_layers_to_save: Tuple[int, ...] = kwargs.get(
585
- "embeddings_layers_to_save", ()
586
- )
587
- self.attention_maps_to_save: list[tuple[int, int]] = kwargs.get(
588
- "attention_maps_to_save", []
589
- )
590
-
591
- # Spatial info configuration
592
- self.use_spatial_information: bool = kwargs.get(
593
- "use_spatial_information", False
594
- )
595
- self.num_scales: int = kwargs.get("num_scales", 10)
596
- self.sigma_min: float = kwargs.get("sigma_min", 1.0)
597
- self.sigma_max: float = kwargs.get("sigma_max", 10.0)
598
-
599
- super().__init__(**kwargs)
600
-
601
- def __post_init__(self) -> None: # type: ignore # noqa: N807
602
- """
603
- Checks that the given values are compatible.
604
- """
605
- if self.key_size is None:
606
- if not self.embed_dim % self.attention_heads == 0:
607
- raise ValueError(
608
- f"When no key size is provided, the embedding dimension"
609
- f"should be divisible by the number of heads, however "
610
- f"provided embedding dimension is {self.embed_dim} and "
611
- f"the number of heads is {self.attention_heads}."
612
- )
613
- self.key_size = self.embed_dim // self.attention_heads
614
-
615
-
616
- class sCT(PreTrainedModel): # noqa: N801
617
- config_class = sCTConfig
618
-
619
- def __init__(self, config: sCTConfig):
620
- # super().__init__(config)
621
- super().__init__(config=config)
622
- if config.use_spatial_information:
623
- self.spatial_embed_layer = SpatialEncoding(
624
- embed_dim=config.token_embed_dim,
625
- num_scales=config.num_scales,
626
- sigma_min=config.sigma_min,
627
- sigma_max=config.sigma_max,
628
- )
629
- self.cell_len = config.cell_len
630
-
631
- self.token_embed = nn.Embedding(config.alphabet_size, config.token_embed_dim)
632
-
633
- attention_maps_to_save = config.attention_maps_to_save
634
- self._attention_layers_to_save = list({t[0] for t in attention_maps_to_save})
635
-
636
- self._attention_maps_per_layer_to_save = {
637
- layer: [t[1] for t in attention_maps_to_save if t[0] == layer]
638
- for layer in self._attention_layers_to_save
639
- }
640
-
641
- max_layer = max(self._attention_layers_to_save + [0])
642
- if max_layer > config.num_layers:
643
- raise ValueError(
644
- f"You are requiring attention maps for layer {max_layer}, "
645
- f"while the model has {config.num_layers} layers only."
646
- )
647
-
648
- filter_list = np.linspace(
649
- config.token_embed_dim,
650
- config.embed_dim,
651
- config.num_downsamples + 1,
652
- )
653
-
654
- filter_list = np.ceil(filter_list / 32) * 32
655
- filter_list = filter_list.astype(int).tolist()
656
-
657
- self._filter_list = filter_list
658
- self._rotary_embedding_config = RotaryEmbeddingConfig(rescaling_factor=None)
659
-
660
- self.stem_conv = nn.Sequential(
661
- nn.Conv1d(
662
- in_channels=config.token_embed_dim,
663
- out_channels=config.token_embed_dim,
664
- kernel_size=15,
665
- padding="same",
666
- ),
667
- nn.GELU(approximate="tanh"),
668
- )
669
- downsampled_seq_lens = [
670
- self.cell_len // (2**i) for i in range(len(filter_list) - 1)
671
- ]
672
-
673
- self.conv_tower = nn.ModuleList(
674
- [
675
- ConvTowerBlock(
676
- dim_in=self._filter_list[i],
677
- dim_out=self._filter_list[i + 1],
678
- kernel_size=5,
679
- seq_len=seq_len,
680
- num_cells=config.num_cells,
681
- )
682
- for i, seq_len in zip(range(len(filter_list) - 1), downsampled_seq_lens)
683
- ]
684
- )
685
-
686
- self.deconv_tower = nn.ModuleList(
687
- [
688
- DeConvTowerBlock(
689
- dim_in=filter_list[-1 - i],
690
- dim_out=filter_list[-1 - i - 1],
691
- kernel_size=5,
692
- stride=2,
693
- seq_len=seq_len // 2,
694
- num_cells=config.num_cells,
695
- )
696
- for i, seq_len in zip(
697
- range(len(filter_list) - 1), downsampled_seq_lens[::-1]
698
- )
699
- ]
700
- )
701
- self.transformer_layers = nn.ModuleList(
702
- [
703
- SelfAttentionBlock(
704
- num_heads=config.attention_heads,
705
- embed_dim=config.embed_dim,
706
- ffn_embed_dim=config.ffn_embed_dim,
707
- key_size=config.key_size,
708
- add_bias_kv=False,
709
- add_bias_fnn=False,
710
- ffn_activation_name="swish",
711
- use_glu_in_ffn=True,
712
- layer_norm_eps=1e-5, # this is the default haiku value
713
- pre_layer_norm=True,
714
- name=f"attention_layer_{layer_idx}",
715
- rotary_embedding_config=self._rotary_embedding_config,
716
- )
717
- for layer_idx in range(config.num_layers)
718
- ]
719
- )
720
-
721
- self.lm_head = LMHead(
722
- dim_in=config.token_embed_dim,
723
- embed_dim=config.embed_dim,
724
- dim_out=config.alphabet_size,
725
- num_hidden_layers=config.num_hidden_layers_head,
726
- )
727
-
728
- def forward(self, input_ids: torch.Tensor) -> dict[str, torch.Tensor]:
729
- outs = {}
730
- embeddings = self.token_embed(input_ids)
731
- x = embeddings.permute(0, 2, 1)
732
- x = self.stem_conv(x)
733
- residuals = []
734
- for _idx, conv_block in enumerate(self.conv_tower):
735
- x, res = conv_block(x)
736
- residuals.append(res)
737
- residuals = residuals[::-1]
738
- x = x.permute(0, 2, 1)
739
-
740
- for layer_idx, transformer in enumerate(self.transformer_layers):
741
- output = transformer(x)
742
- x = output["embeddings"]
743
- if (layer_idx + 1) in self.config.embeddings_layers_to_save:
744
- outs[f"embeddings_{(layer_idx + 1)}"] = output["embeddings"]
745
- if (layer_idx + 1) in self._attention_layers_to_save:
746
- for map_number in self._attention_maps_per_layer_to_save[layer_idx + 1]:
747
- dkey = f"attention_map_layer_{layer_idx + 1}_number_{map_number}"
748
- outs[dkey] = output["attention_weights"][:, map_number + 1]
749
- x = x.permute(0, 2, 1)
750
- for deconv_block, res in zip(self.deconv_tower, residuals):
751
- x = deconv_block(x, res)
752
- x = x.permute(0, 2, 1)
753
- logits = self.lm_head(x)
754
- outs["logits"] = logits
755
-
756
- return outs