File size: 27,421 Bytes
3f0f0ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import math
import numpy as np
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.attention import FeedForward
from diffusers.models.attention_dispatch import dispatch_attention_fn
from diffusers.models.attention_processor import Attention
from diffusers.models.cache_utils import CacheMixin
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def get_timestep_embedding(
    timesteps: torch.Tensor,
    embedding_dim: int,
    flip_sin_to_cos: bool = False,
    downscale_freq_shift: float = 1,
    scale: float = 1,
    max_period: int = 10000,
) -> torch.Tensor:
    """
    This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.

    Args
        timesteps (torch.Tensor):
            a 1-D Tensor of N indices, one per batch element. These may be fractional.
        embedding_dim (int):
            the dimension of the output.
        flip_sin_to_cos (bool):
            Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
        downscale_freq_shift (float):
            Controls the delta between frequencies between dimensions
        scale (float):
            Scaling factor applied to the embeddings.
        max_period (int):
            Controls the maximum frequency of the embeddings
    Returns
        torch.Tensor: an [N x dim] Tensor of positional embeddings.
    """
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"

    half_dim = embedding_dim // 2
    exponent = -math.log(max_period) * torch.arange(
        start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
    )
    exponent = exponent / (half_dim - downscale_freq_shift)

    emb = torch.exp(exponent).to(timesteps.dtype)
    emb = timesteps[:, None].float() * emb[None, :]

    # scale embeddings
    emb = scale * emb

    # concat sine and cosine embeddings
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)

    # flip sine and cosine embeddings
    if flip_sin_to_cos:
        emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)

    # zero pad
    if embedding_dim % 2 == 1:
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb


def apply_rotary_emb_qwen(
    x: torch.Tensor,
    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
    use_real: bool = True,
    use_real_unbind_dim: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
    to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
    reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
    tensors contain rotary embeddings and are returned as real tensors.

    Args:
        x (`torch.Tensor`):
            Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
        freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
    """
    if use_real:
        cos, sin = freqs_cis  # [S, D]
        cos = cos[None, None]
        sin = sin[None, None]
        cos, sin = cos.to(x.device), sin.to(x.device)

        if use_real_unbind_dim == -1:
            # Used for flux, cogvideox, hunyuan-dit
            x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
            x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        elif use_real_unbind_dim == -2:
            # Used for Stable Audio, OmniGen, CogView4 and Cosmos
            x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2)  # [B, S, H, D//2]
            x_rotated = torch.cat([-x_imag, x_real], dim=-1)
        else:
            raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")

        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)

        return out
    else:
        x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
        freqs_cis = freqs_cis.unsqueeze(1)
        x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)

        return x_out.type_as(x)


class QwenTimestepProjEmbeddings(nn.Module):
    def __init__(self, embedding_dim):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

    def forward(self, timestep, hidden_states):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype))  # (N, D)

        conditioning = timesteps_emb

        return conditioning


class QwenEmbedRope(nn.Module):
    def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
        super().__init__()
        self.theta = theta
        self.axes_dim = axes_dim
        pos_index = torch.arange(1024)
        neg_index = torch.arange(1024).flip(0) * -1 - 1
        self.pos_freqs = torch.cat(
            [
                self.rope_params(pos_index, self.axes_dim[0], self.theta),
                self.rope_params(pos_index, self.axes_dim[1], self.theta),
                self.rope_params(pos_index, self.axes_dim[2], self.theta),
            ],
            dim=1,
        )
        self.neg_freqs = torch.cat(
            [
                self.rope_params(neg_index, self.axes_dim[0], self.theta),
                self.rope_params(neg_index, self.axes_dim[1], self.theta),
                self.rope_params(neg_index, self.axes_dim[2], self.theta),
            ],
            dim=1,
        )
        self.rope_cache = {}

        # 是否使用 scale rope
        self.scale_rope = scale_rope

    def rope_params(self, index, dim, theta=10000):
        """
        Args:
            index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
        """
        assert dim % 2 == 0
        freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
        freqs = torch.polar(torch.ones_like(freqs), freqs)
        return freqs

    def forward(self, video_fhw, txt_seq_lens, device):
        """
        Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
        txt_length: [bs] a list of 1 integers representing the length of the text
        """
        if self.pos_freqs.device != device:
            self.pos_freqs = self.pos_freqs.to(device)
            self.neg_freqs = self.neg_freqs.to(device)

        if isinstance(video_fhw, list):
            video_fhw = video_fhw[0]
        frame, height, width = video_fhw
        rope_key = f"{frame}_{height}_{width}"

        if rope_key not in self.rope_cache:
            seq_lens = frame * height * width
            freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
            freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
            freqs_frame = freqs_pos[0][:frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
            if self.scale_rope:
                freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
                freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
                freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
                freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)

            else:
                freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
                freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)

            freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
            self.rope_cache[rope_key] = freqs.clone().contiguous()
        vid_freqs = self.rope_cache[rope_key]

        if self.scale_rope:
            max_vid_index = max(height // 2, width // 2)
        else:
            max_vid_index = max(height, width)

        max_len = max(txt_seq_lens)
        txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]

        return vid_freqs, txt_freqs


class QwenDoubleStreamAttnProcessor2_0:
    """
    Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
    implements joint attention computation where text and image streams are processed together.
    """

    _attention_backend = None

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,  # Image stream
        encoder_hidden_states: torch.FloatTensor = None,  # Text stream
        encoder_hidden_states_mask: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        if encoder_hidden_states is None:
            raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")

        seq_txt = encoder_hidden_states.shape[1]

        # Compute QKV for image stream (sample projections)
        img_query = attn.to_q(hidden_states)
        img_key = attn.to_k(hidden_states)
        img_value = attn.to_v(hidden_states)

        # Compute QKV for text stream (context projections)
        txt_query = attn.add_q_proj(encoder_hidden_states)
        txt_key = attn.add_k_proj(encoder_hidden_states)
        txt_value = attn.add_v_proj(encoder_hidden_states)

        # Reshape for multi-head attention
        img_query = img_query.unflatten(-1, (attn.heads, -1))
        img_key = img_key.unflatten(-1, (attn.heads, -1))
        img_value = img_value.unflatten(-1, (attn.heads, -1))

        txt_query = txt_query.unflatten(-1, (attn.heads, -1))
        txt_key = txt_key.unflatten(-1, (attn.heads, -1))
        txt_value = txt_value.unflatten(-1, (attn.heads, -1))

        # Apply QK normalization
        if attn.norm_q is not None:
            img_query = attn.norm_q(img_query)
        if attn.norm_k is not None:
            img_key = attn.norm_k(img_key)
        if attn.norm_added_q is not None:
            txt_query = attn.norm_added_q(txt_query)
        if attn.norm_added_k is not None:
            txt_key = attn.norm_added_k(txt_key)

        # Apply RoPE
        if image_rotary_emb is not None:
            img_freqs, txt_freqs = image_rotary_emb
            img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
            img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
            txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
            txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)

        # Concatenate for joint attention
        # Order: [text, image]
        joint_query = torch.cat([txt_query, img_query], dim=1)
        joint_key = torch.cat([txt_key, img_key], dim=1)
        joint_value = torch.cat([txt_value, img_value], dim=1)

        # Compute joint attention
        joint_hidden_states = dispatch_attention_fn(
            joint_query,
            joint_key,
            joint_value,
            attn_mask=attention_mask,
            dropout_p=0.0,
            is_causal=False,
            backend=self._attention_backend,
        )

        # Reshape back
        joint_hidden_states = joint_hidden_states.flatten(2, 3)
        joint_hidden_states = joint_hidden_states.to(joint_query.dtype)

        # Split attention outputs back
        txt_attn_output = joint_hidden_states[:, :seq_txt, :]  # Text part
        img_attn_output = joint_hidden_states[:, seq_txt:, :]  # Image part

        # Apply output projections
        img_attn_output = attn.to_out[0](img_attn_output)
        if len(attn.to_out) > 1:
            img_attn_output = attn.to_out[1](img_attn_output)  # dropout

        txt_attn_output = attn.to_add_out(txt_attn_output)

        return img_attn_output, txt_attn_output


@maybe_allow_in_graph
class QwenImageTransformerBlock(nn.Module):
    def __init__(
        self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
    ):
        super().__init__()

        self.dim = dim
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim

        # Image processing modules
        self.img_mod = nn.Sequential(
            nn.SiLU(),
            nn.Linear(dim, 6 * dim, bias=True),  # For scale, shift, gate for norm1 and norm2
        )
        self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,  # Enable cross attention for joint computation
            added_kv_proj_dim=dim,  # Enable added KV projections for text stream
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            context_pre_only=False,
            bias=True,
            processor=QwenDoubleStreamAttnProcessor2_0(),
            qk_norm=qk_norm,
            eps=eps,
        )
        self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
        self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        # Text processing modules
        self.txt_mod = nn.Sequential(
            nn.SiLU(),
            nn.Linear(dim, 6 * dim, bias=True),  # For scale, shift, gate for norm1 and norm2
        )
        self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
        # Text doesn't need separate attention - it's handled by img_attn joint computation
        self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
        self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

    def _modulate(self, x, mod_params):
        """Apply modulation to input tensor"""
        shift, scale, gate = mod_params.chunk(3, dim=-1)
        return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        encoder_hidden_states_mask: torch.Tensor,
        temb: torch.Tensor,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Get modulation parameters for both streams
        img_mod_params = self.img_mod(temb)  # [B, 6*dim]
        txt_mod_params = self.txt_mod(temb)  # [B, 6*dim]

        # Split modulation parameters for norm1 and norm2
        img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)  # Each [B, 3*dim]
        txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)  # Each [B, 3*dim]

        # Process image stream - norm1 + modulation
        img_normed = self.img_norm1(hidden_states)
        img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)

        # Process text stream - norm1 + modulation
        txt_normed = self.txt_norm1(encoder_hidden_states)
        txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)

        # Use QwenAttnProcessor2_0 for joint attention computation
        # This directly implements the DoubleStreamLayerMegatron logic:
        # 1. Computes QKV for both streams
        # 2. Applies QK normalization and RoPE
        # 3. Concatenates and runs joint attention
        # 4. Splits results back to separate streams
        joint_attention_kwargs = joint_attention_kwargs or {}
        attn_output = self.attn(
            hidden_states=img_modulated,  # Image stream (will be processed as "sample")
            encoder_hidden_states=txt_modulated,  # Text stream (will be processed as "context")
            encoder_hidden_states_mask=encoder_hidden_states_mask,
            image_rotary_emb=image_rotary_emb,
            **joint_attention_kwargs,
        )

        # QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
        img_attn_output, txt_attn_output = attn_output

        # Apply attention gates and add residual (like in Megatron)
        hidden_states = hidden_states + img_gate1 * img_attn_output
        encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output

        # Process image stream - norm2 + MLP
        img_normed2 = self.img_norm2(hidden_states)
        img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
        img_mlp_output = self.img_mlp(img_modulated2)
        hidden_states = hidden_states + img_gate2 * img_mlp_output

        # Process text stream - norm2 + MLP
        txt_normed2 = self.txt_norm2(encoder_hidden_states)
        txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
        txt_mlp_output = self.txt_mlp(txt_modulated2)
        encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output

        # Clip to prevent overflow for fp16
        if encoder_hidden_states.dtype == torch.float16:
            encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
        if hidden_states.dtype == torch.float16:
            hidden_states = hidden_states.clip(-65504, 65504)

        return encoder_hidden_states, hidden_states


class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
    """
    The Transformer model introduced in Qwen.

    Args:
        patch_size (`int`, defaults to `2`):
            Patch size to turn the input data into small patches.
        in_channels (`int`, defaults to `64`):
            The number of channels in the input.
        out_channels (`int`, *optional*, defaults to `None`):
            The number of channels in the output. If not specified, it defaults to `in_channels`.
        num_layers (`int`, defaults to `60`):
            The number of layers of dual stream DiT blocks to use.
        attention_head_dim (`int`, defaults to `128`):
            The number of dimensions to use for each attention head.
        num_attention_heads (`int`, defaults to `24`):
            The number of attention heads to use.
        joint_attention_dim (`int`, defaults to `3584`):
            The number of dimensions to use for the joint attention (embedding/channel dimension of
            `encoder_hidden_states`).
        guidance_embeds (`bool`, defaults to `False`):
            Whether to use guidance embeddings for guidance-distilled variant of the model.
        axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
            The dimensions to use for the rotary positional embeddings.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["QwenImageTransformerBlock"]
    _skip_layerwise_casting_patterns = ["pos_embed", "norm"]

    @register_to_config
    def __init__(
        self,
        patch_size: int = 2,
        in_channels: int = 64,
        out_channels: Optional[int] = 16,
        num_layers: int = 60,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 3584,
        guidance_embeds: bool = False,  # TODO: this should probably be removed
        axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
    ):
        super().__init__()
        self.out_channels = out_channels or in_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)

        self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)

        self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)

        self.img_in = nn.Linear(in_channels, self.inner_dim)
        self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                QwenImageTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for _ in range(num_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor = None,
        encoder_hidden_states_mask: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_shapes: Optional[List[Tuple[int, int, int]]] = None,
        txt_seq_lens: Optional[List[int]] = None,
        guidance: torch.Tensor = None,  # TODO: this should probably be removed
        attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_block_samples = None,
        return_dict: bool = True,
    ) -> Union[torch.Tensor, Transformer2DModelOutput]:
        """
        The [`QwenTransformer2DModel`] forward method.

        Args:
            hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
                Input `hidden_states`.
            encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
                Mask of the input conditions.
            timestep ( `torch.LongTensor`):
                Used to indicate denoising step.
            attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )

        hidden_states = self.img_in(hidden_states)

        timestep = timestep.to(hidden_states.dtype)
        encoder_hidden_states = self.txt_norm(encoder_hidden_states)
        encoder_hidden_states = self.txt_in(encoder_hidden_states)

        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000

        temb = (
            self.time_text_embed(timestep, hidden_states)
            if guidance is None
            else self.time_text_embed(timestep, guidance, hidden_states)
        )

        image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device)

        for index_block, block in enumerate(self.transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
                    block,
                    hidden_states,
                    encoder_hidden_states,
                    encoder_hidden_states_mask,
                    temb,
                    image_rotary_emb,
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_hidden_states_mask=encoder_hidden_states_mask,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    joint_attention_kwargs=attention_kwargs,
                )
            
            # controlnet residual
            if controlnet_block_samples is not None:
                interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
                interval_control = int(np.ceil(interval_control))
                hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]

        # Use only the image part (hidden_states) from the dual-stream blocks
        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)