Qwen-Image-ControlNet-Union / pipeline_qwenimage_controlnet.py
wanghaofan's picture
upload codes and samples
3f0f0ad verified
# Copyright 2025 Qwen-Image Team, InstantX Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import QwenImageLoraLoaderMixin
from diffusers.models import AutoencoderKLQwenImage
# from diffusers.models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.qwenimage.pipeline_output import QwenImagePipelineOutput
# from diffusers.models.controlnets.controlnet_qwenimage import QwenImageControlNetModel
from transformer_qwenimage import QwenImageTransformer2DModel
from controlnet_qwenimage import QwenImageControlNetModel, QwenImageMultiControlNetModel
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers.utils import load_image
>>> from diffusers import QwenImageControlNetPipeline
>>> controlnet = QwenImageControlNetModel.from_pretrained("InstantX/Qwen-Image-ControlNet-Union", torch_dtype=torch.bfloat16)
>>> pipe = QwenImageControlNetPipeline.from_pretrained("Qwen/Qwen-Image", controlnet=controlnet, torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = ""
>>> negative_prompt = " "
>>> control_image = load_image(CONDITION_IMAGE_PATH)
>>> # Depending on the variant being used, the pipeline call will slightly vary.
>>> # Refer to the pipeline documentation for more details.
>>> image = pipe(prompt, negative_prompt=negative_prompt, control_image=control_image, controlnet_conditioning_scale=1.0, num_inference_steps=30, true_cfg_scale=4.0).images[0]
>>> image.save("qwenimage_cn_union.png")
```
"""
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.15,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class QwenImageControlNetPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
r"""
The QwenImage pipeline for text-to-image generation.
Args:
transformer ([`QwenImageTransformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
tokenizer (`QwenTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
"""
model_cpu_offload_seq = "text_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds"]
def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKLQwenImage,
text_encoder: Qwen2_5_VLForConditionalGeneration,
tokenizer: Qwen2Tokenizer,
transformer: QwenImageTransformer2DModel,
controlnet: QwenImageControlNetModel,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
controlnet=controlnet,
)
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
# QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
self.tokenizer_max_length = 1024
self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
self.prompt_template_encode_start_idx = 34
self.default_sample_size = 128
def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
bool_mask = mask.bool()
valid_lengths = bool_mask.sum(dim=1)
selected = hidden_states[bool_mask]
split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
return split_result
def _get_qwen_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
template = self.prompt_template_encode
drop_idx = self.prompt_template_encode_start_idx
txt = [template.format(e) for e in prompt]
txt_tokens = self.tokenizer(
txt, max_length=self.tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
).to(self.device)
encoder_hidden_states = self.text_encoder(
input_ids=txt_tokens.input_ids,
attention_mask=txt_tokens.attention_mask,
output_hidden_states=True,
)
hidden_states = encoder_hidden_states.hidden_states[-1]
split_hidden_states = self._extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
max_seq_len = max([e.size(0) for e in split_hidden_states])
prompt_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
)
encoder_attention_mask = torch.stack(
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
)
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
return prompt_embeds, encoder_attention_mask
def encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_mask: Optional[torch.Tensor] = None,
max_sequence_length: int = 1024,
):
r"""
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, device)
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
return prompt_embeds, prompt_embeds_mask
def check_inputs(
self,
prompt,
height,
width,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_embeds_mask=None,
negative_prompt_embeds_mask=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
logger.warning(
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_embeds_mask is None:
raise ValueError(
"If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
if max_sequence_length is not None and max_sequence_length > 1024:
raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
@staticmethod
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents
@staticmethod
def _unpack_latents(latents, height, width, vae_scale_factor):
batch_size, num_patches, channels = latents.shape
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (vae_scale_factor * 2))
width = 2 * (int(width) // (vae_scale_factor * 2))
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
latents = latents.permute(0, 3, 1, 4, 2, 5)
latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
return latents
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
shape = (batch_size, 1, num_channels_latents, height, width)
if latents is not None:
return latents.to(device=device, dtype=dtype)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
return latents
# Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
if isinstance(image, torch.Tensor):
pass
else:
image = self.image_processor.preprocess(image, height=height, width=width)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
@property
def guidance_scale(self):
return self._guidance_scale
@property
def attention_kwargs(self):
return self._attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
true_cfg_scale: float = 4.0,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 1.0,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
control_image: PipelineImageInput = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
not greater than `1`).
true_cfg_scale (`float`, *optional*, defaults to 1.0):
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 3.5):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
[`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is a list with the generated images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(self.controlnet.nets) if isinstance(self.controlnet, QwenImageMultiControlNetModel) else 1
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_embeds_mask=prompt_embeds_mask,
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
has_neg_prompt = negative_prompt is not None or (
negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
)
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
prompt_embeds, prompt_embeds_mask = self.encode_prompt(
prompt=prompt,
prompt_embeds=prompt_embeds,
prompt_embeds_mask=prompt_embeds_mask,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
if do_true_cfg:
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
prompt=negative_prompt,
prompt_embeds=negative_prompt_embeds,
prompt_embeds_mask=negative_prompt_embeds_mask,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
# 3. Prepare control image
num_channels_latents = self.transformer.config.in_channels // 4
if isinstance(self.controlnet, QwenImageControlNetModel):
control_image = self.prepare_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.vae.dtype,
) # torch.Size([1, 3, height_ori, width_ori])
height, width = control_image.shape[-2:]
if control_image.ndim == 4:
control_image = control_image.unsqueeze(2) # torch.Size([1, 3, 1, height_ori, width_ori])
# vae encode
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample)
latents_mean = (torch.tensor(self.vae.config.latents_mean).view(1, self.vae.config.z_dim, 1, 1, 1)).to(device)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(device)
control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
control_image = (control_image - latents_mean) * latents_std
control_image = control_image.permute(0, 2, 1, 3, 4) # torch.Size([1, 1, 16, height_ori//8, width_ori//8])
# pack
control_image = self._pack_latents(
control_image,
batch_size=control_image.shape[0],
num_channels_latents=num_channels_latents,
height=control_image.shape[3],
width=control_image.shape[4],
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
img_shapes = [(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)] * batch_size
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("max_image_seq_len", 4096),
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, QwenImageControlNetModel) else keeps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
if self.attention_kwargs is None:
self._attention_kwargs = {}
# 6. Denoising loop
self.scheduler.set_begin_index(0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
# controlnet
controlnet_block_samples = self.controlnet(
hidden_states=latents,
controlnet_cond=control_image.to(dtype=latents.dtype, device=device),
conditioning_scale=cond_scale,
timestep=timestep / 1000,
encoder_hidden_states=prompt_embeds,
encoder_hidden_states_mask=prompt_embeds_mask,
img_shapes=img_shapes,
txt_seq_lens=prompt_embeds_mask.sum(dim=1).tolist(),
return_dict=False,
)
with self.transformer.cache_context("cond"):
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
encoder_hidden_states=prompt_embeds,
encoder_hidden_states_mask=prompt_embeds_mask,
img_shapes=img_shapes,
txt_seq_lens=prompt_embeds_mask.sum(dim=1).tolist(),
controlnet_block_samples=controlnet_block_samples,
attention_kwargs=self.attention_kwargs,
return_dict=False,
)[0]
if do_true_cfg:
with self.transformer.cache_context("uncond"):
neg_noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
encoder_hidden_states_mask=negative_prompt_embeds_mask,
encoder_hidden_states=negative_prompt_embeds,
img_shapes=img_shapes,
txt_seq_lens=negative_prompt_embeds_mask.sum(dim=1).tolist(),
controlnet_block_samples=controlnet_block_samples,
attention_kwargs=self.attention_kwargs,
return_dict=False,
)[0]
comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
noise_pred = comb_pred * (cond_norm / noise_norm)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = latents.to(self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = latents / latents_std + latents_mean
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return QwenImagePipelineOutput(images=image)