# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import PeftAdapterMixin, FromOriginalModelMixin from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers from diffusers.models.attention_processor import AttentionProcessor from diffusers.models.cache_utils import CacheMixin from diffusers.models.controlnets.controlnet import zero_module from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers.models.modeling_utils import ModelMixin # from diffusers.models.transformers.transformer_qwenimage import QwenImageTransformerBlock, QwenTimestepProjEmbeddings, QwenEmbedRope, RMSNorm from transformer_qwenimage import QwenImageTransformerBlock, QwenTimestepProjEmbeddings, QwenEmbedRope, RMSNorm logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class QwenImageControlNetOutput(BaseOutput): controlnet_block_samples: Tuple[torch.Tensor] class QwenImageControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin): _supports_gradient_checkpointing = True @register_to_config def __init__( self, patch_size: int = 2, in_channels: int = 64, out_channels: Optional[int] = 16, num_layers: int = 60, attention_head_dim: int = 128, num_attention_heads: int = 24, joint_attention_dim: int = 3584, axes_dims_rope: Tuple[int, int, int] = (16, 56, 56), extra_condition_channels: int = 0, # for controlnet-inpainting ): super().__init__() self.out_channels = out_channels or in_channels self.inner_dim = num_attention_heads * attention_head_dim self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True) self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim) self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6) self.img_in = nn.Linear(in_channels, self.inner_dim) self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim) self.transformer_blocks = nn.ModuleList( [ QwenImageTransformerBlock( dim=self.inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, ) for _ in range(num_layers) ] ) # controlnet_blocks self.controlnet_blocks = nn.ModuleList([]) for _ in range(len(self.transformer_blocks)): self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim))) self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self): r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) @classmethod def from_transformer( cls, transformer, num_layers: int = 5, attention_head_dim: int = 128, num_attention_heads: int = 24, load_weights_from_transformer=True, extra_condition_channels: int = 0, ): config = dict(transformer.config) config["num_layers"] = num_layers config["attention_head_dim"] = attention_head_dim config["num_attention_heads"] = num_attention_heads config["extra_condition_channels"] = extra_condition_channels controlnet = cls.from_config(config) if load_weights_from_transformer: controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict()) controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict()) controlnet.img_in.load_state_dict(transformer.img_in.state_dict()) controlnet.txt_in.load_state_dict(transformer.txt_in.state_dict()) controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False) controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder) return controlnet def forward( self, hidden_states: torch.Tensor, controlnet_cond: torch.Tensor, conditioning_scale: float = 1.0, encoder_hidden_states: torch.Tensor = None, encoder_hidden_states_mask: torch.Tensor = None, timestep: torch.LongTensor = None, img_shapes: Optional[List[Tuple[int, int, int]]] = None, txt_seq_lens: Optional[List[int]] = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`FluxTransformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. controlnet_cond (`torch.Tensor`): The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. conditioning_scale (`float`, defaults to `1.0`): The scale factor for ControlNet outputs. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) hidden_states = self.img_in(hidden_states) # add hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond) temb = self.time_text_embed(timestep, hidden_states) image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device) timestep = timestep.to(hidden_states.dtype) encoder_hidden_states = self.txt_norm(encoder_hidden_states) encoder_hidden_states = self.txt_in(encoder_hidden_states) block_samples = () for index_block, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( block, hidden_states, encoder_hidden_states, encoder_hidden_states_mask, temb, image_rotary_emb, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, encoder_hidden_states_mask=encoder_hidden_states_mask, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) block_samples = block_samples + (hidden_states,) # controlnet block controlnet_block_samples = () for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks): block_sample = controlnet_block(block_sample) controlnet_block_samples = controlnet_block_samples + (block_sample,) # scaling controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples] controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (controlnet_block_samples) return QwenImageControlNetOutput( controlnet_block_samples=controlnet_block_samples, ) class QwenImageMultiControlNetModel(ModelMixin): r""" `QwenImageMultiControlNetModel` wrapper class for Multi-QwenImageControlNetModel This module is a wrapper for multiple instances of the `QwenImageControlNetModel`. The `forward()` API is designed to be compatible with `QwenImageControlNetModel`. Args: controlnets (`List[QwenImageControlNetModel]`): Provides additional conditioning to the unet during the denoising process. You must set multiple `QwenImageControlNetModel` as a list. """ def __init__(self, controlnets): super().__init__() self.nets = nn.ModuleList(controlnets) def forward( self, hidden_states: torch.FloatTensor, controlnet_cond: List[torch.tensor], conditioning_scale: List[float], encoder_hidden_states: torch.Tensor = None, encoder_hidden_states_mask: torch.Tensor = None, timestep: torch.LongTensor = None, img_shapes: Optional[List[Tuple[int, int, int]]] = None, txt_seq_lens: Optional[List[int]] = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[QwenImageControlNetOutput, Tuple]: # ControlNet-Union with multiple conditions # only load one ControlNet for saving memories if len(self.nets) == 1: controlnet = self.nets[0] for i, (image, scale) in enumerate(zip(controlnet_cond, conditioning_scale)): block_samples = controlnet( hidden_states=hidden_states, controlnet_cond=image, conditioning_scale=scale, encoder_hidden_states=encoder_hidden_states, encoder_hidden_states_mask=encoder_hidden_states_mask, timestep=timestep, img_shapes=img_shapes, txt_seq_lens=txt_seq_lens, joint_attention_kwargs=joint_attention_kwargs, return_dict=return_dict, ) # merge samples if i == 0: control_block_samples = block_samples else: if block_samples is not None and control_block_samples is not None: control_block_samples = [ control_block_sample + block_sample for control_block_sample, block_sample in zip(control_block_samples, block_samples) ] else: raise ValueError("QwenImageMultiControlNetModel only supports controlnet-union now.") return control_block_samples