File size: 18,460 Bytes
f290f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
        "__module__": "stable_baselines3.sac.policies",
        "__doc__": "\n    Policy class (with both actor and critic) for SAC.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n    :param features_extractor_class: Features extractor to use.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    :param n_critics: Number of critic networks to create.\n    :param share_features_extractor: Whether to share or not the features extractor\n        between the actor and the critic (this saves computation time)\n    ",
        "__init__": "<function MultiInputPolicy.__init__ at 0x000001BDEC6FF9C0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x000001BDEC724340>"
    },
    "verbose": 1,
    "policy_kwargs": {
        "use_sde": false
    },
    "num_timesteps": 250000,
    "_total_timesteps": 500000,
    "_num_timesteps_at_start": 0,
    "seed": 42,
    "action_noise": null,
    "start_time": 1755338302920359500,
    "learning_rate": 0.001,
    "tensorboard_log": "./logs_pnp_sac_her/tb",
    "_last_obs": null,
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWV9AEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAP7uInMoXvQ/FTCBEMTh6T95VypIqy/bP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlIwMZGVzaXJlZF9nb2FslGgHKJYYAAAAAAAAACfepuc4UPQ/I8S4gE7T6T+2AS3bRy7bP5RoDksBSwOGlGgSdJRSlIwLb2JzZXJ2YXRpb26UaAcolsgAAAAAAAAAQmEn2Dyk+D9jE5q3C4LnP85Q73oRC+A//u4icyhe9D8VMIEQxOHpP3lXKkirL9s/EMkRlFEY0b+Q5TjHwv2yP4wo0bbembO/9fgPGxdwdj+OPGNUiC9+P27NK7iNUfA9axyNPKwN/70MoLTInuJFP2rHm5wgYo2/Na1t6S9pa7/FPcjbD8CCPwEkvQ8SyeG91UKmpiHs8D1BjwAlWQkMPETy0ZwgYo0/Vonf6S9paz8a+znbD8CCvzGLIcvGiWG/Db67B9M3Y7+UaA5LAUsZhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[1.27298779 0.80880931 0.42478449]]",
        "desired_goal": "[[1.26958552 0.80704427 0.42469975]]",
        "observation": "[[ 1.54009709e+00  7.34624728e-01  5.01351109e-01  1.27298779e+00\n   8.08809311e-01  4.24784489e-01 -2.67109294e-01  7.41845833e-02\n  -7.65666195e-02  5.47799135e-03  7.36954931e-03  2.37466429e-10\n  -4.51886581e-10  6.67884380e-04 -1.43473194e-02 -3.34605558e-03\n   9.15539159e-03 -1.29406048e-10  2.46253163e-10  1.89982826e-19\n   1.43473194e-02  3.34605559e-03 -9.15539158e-03 -2.14089228e-03\n  -2.34595506e-03]]"
    },
    "_episode_num": 4999,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.5000020000000001,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwBwAAAAAAACMAWyUSzKMAXSUR0DOJR2sV+I/dX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOJpOluWKNdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOKASpBHCodX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOKXiYLLIQdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOKuQ7muDBdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOLFo08/2TdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOLcQuf29MdX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOLzUG3WnTdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOMKUAaNuMdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOMhT50r9VdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOM4zHAAQydX2UKGgGRwAAAAAAAAAAaAdLMmgIR0DONQBjH4oJdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DONmtdE9dNdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DON9roGIKudX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOOUrhky1vdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOOrkR6F/QdX2UKGgGR8AqAAAAAAAAaAdLMmgIR0DOPCsMqjJudX2UKGgGR8AQAAAAAAAAaAdLMmgIR0DOPZf0wrUcdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOPwWn0kGBdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOQH2hM8HOdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOQfWahHskdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DORj6hUR4AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DOR6hGjKxLdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOSRXh86V/dX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOSoncrRShdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOTAwiJO32dX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOTXsT37DVdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOTvENQTEjdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DOUGcGorFwdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOUdoQWepXdX2UKGgGR8AxAAAAAAAAaAdLMmgIR0DOU1PAoG6gdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOVMbFbVz7dX2UKGgGR8A8AAAAAAAAaAdLMmgIR0DOVjgrjHXFdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOV6glByCGdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOWRoeeWfLdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOWooYBNmEdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOXAENc4YKdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOXW8CgbqAdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOXuj72tdSdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOYFj1VYITdX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DOYcTu6VdHdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOYzdWp6yCdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOZLEjFAE/dX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOZh0cp9ZzdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DOZ5S5TZQIdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOaQqyt3fRdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOaoHjfek6dX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOa/Hc+JP7dX2UKGgGR8AmAAAAAAAAaAdLMmgIR0DObWPWattAdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DObtfP3SKFdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOcFCLCN0edX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOcc2N5t3wdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOcz+HWSU1dX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOdLcghbGFdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOdi8Z1mrbdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOd6dHc1wYdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOeSJuGbkPdX2UKGgGR8A0AAAAAAAAaAdLMmgIR0DOepf05EMLdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOfA3uTibVdX2UKGgGR8AqAAAAAAAAaAdLMmgIR0DOfY3ndO6/dX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOfv/g75mAdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOg0/8jzI4dX2UKGgGR8AQAAAAAAAAaAdLMmgIR0DOhMGvMbFTdX2UKGgGR8AYAAAAAAAAaAdLMmgIR0DOhjmokzGhdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOh6miBXjmdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOiSSWX1J2dX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOip6Pp6hQdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOjBiJAMUidX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOjYuHYYixdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOjwU9wFTvdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOkHI/7iyZdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOkev1lGwzdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOk2Xu3MINdX2UKGgGR8AzAAAAAAAAaAdLMmgIR0DOlNnoTwlTdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOlk3hwVCYdX2UKGgGR8AuAAAAAAAAaAdLMmgIR0DOl8rULDyfdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOmTyD5CWvdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOmrR9PUKBdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOnCp2ll9SdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOnaRv5xiodX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOnxVu1ndwdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOoImclPaddX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOoflJlJ6IdX2UKGgGR8AUAAAAAAAAaAdLMmgIR0DOo2zg88s+dX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOpOLaVUuMdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOplnO0LMLdX2UKGgGRwAAAAAAAAAAaAdLMmgIR0DOp8nIU8FIdX2UKGgGR8AiAAAAAAAAaAdLMmgIR0DOqT3DBMzudX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOqrO7HyVfdX2UKGgGR8AgAAAAAAAAaAdLMmgIR0DOrCFe6ZpjdX2UKGgGR8AsAAAAAAAAaAdLMmgIR0DOrZL1bqyGdX2UKGgGRwAAAAAAAAAAaAdLMmgIR0DOrv/4qPOqdX2UKGgGR8AwAAAAAAAAaAdLMmgIR0DOsH2HFglXdX2UKGgGR8AkAAAAAAAAaAdLMmgIR0DOsfOAd4mkdX2UKGgGR8AoAAAAAAAAaAdLMmgIR0DOs2WvhZQpdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOtNmo73fydX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOtkoEdNnHdX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOt73/HYHxdX2UKGgGR8AcAAAAAAAAaAdLMmgIR0DOuSv4qPOqdX2UKGgGR8AyAAAAAAAAaAdLMmgIR0DOupnzSThYdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVVAYAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwWbnVtcHkuX2NvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAAAAAJSGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUaAdoDUMEAACAP5SGlFKUZS4="
    },
    "_n_updates": 749799,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
        ":serialized:": "gAWVQgUAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5R9lCiMDWFjaGlldmVkX2dvYWyUjBRneW1uYXNpdW0uc3BhY2VzLmJveJSMA0JveJSTlCmBlH2UKIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijAZfc2hhcGWUSwOFlIwDbG93lIwTbnVtcHkuX2NvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoE0sDhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoGyiWAwAAAAAAAAAAAACUaBCMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaB50lFKUjARoaWdolGgbKJYYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoE0sDhZRoHnSUUpSMDWJvdW5kZWRfYWJvdmWUaBsolgMAAAAAAAAAAAAAlGglSwOFlGgedJRSlIwIbG93X3JlcHKUjAQtaW5mlIwJaGlnaF9yZXBylIwDaW5mlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoCimBlH2UKGgNaBNoFksDhZRoGGgbKJYYAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoE0sDhZRoHnSUUpRoIWgbKJYDAAAAAAAAAAAAAJRoJUsDhZRoHnSUUpRoK2gbKJYYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoE0sDhZRoHnSUUpRoMGgbKJYDAAAAAAAAAAAAAJRoJUsDhZRoHnSUUpRoNYwELWluZpRoN4wDaW5mlGg5TnVijAtvYnNlcnZhdGlvbpRoCimBlH2UKGgNaBNoFksZhZRoGGgbKJbIAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgTSxmFlGgedJRSlGghaBsolhkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoJUsZhZRoHnSUUpRoK2gbKJbIAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgTSxmFlGgedJRSlGgwaBsolhkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoJUsZhZRoHnSUUpRoNYwELWluZpRoN4wDaW5mlGg5TnVidWgWTmgNTmg5TnViLg==",
        "spaces": "{'achieved_goal': Box(-inf, inf, (3,), float64), 'desired_goal': Box(-inf, inf, (3,), float64), 'observation': Box(-inf, inf, (25,), float64)}",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhAAAAAAAAAAAACAvwAAgL8AAIC/AACAv5RoC0sEhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlGgWdJRSlIwEaGlnaJRoEyiWEAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/lGgLSwSFlGgWdJRSlIwNYm91bmRlZF9hYm92ZZRoEyiWBAAAAAAAAAABAQEBlGgdSwSFlGgWdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEcgKhmidfLysKo95mGdPpM4AjANpbmOUihH/qyWN4vLKZm5BqMk2VFD6AHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdYwabnVtcHkucmFuZG9tLmJpdF9nZW5lcmF0b3KUjBtfX3B5eF91bnBpY2tsZV9TZWVkU2VxdWVuY2WUk5RoRIwMU2VlZFNlcXVlbmNllJOUSiKi6gNOh5RSlChLKksAaBMolhAAAAAAAAAABjYdY66QrgcovsRvdVztLJRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUSwQpdJRihpRihZRSlHViLg==",
        "dtype": "float32",
        "_shape": [
            4
        ],
        "low": "[-1. -1. -1. -1.]",
        "bounded_below": "[ True  True  True  True]",
        "high": "[1. 1. 1. 1.]",
        "bounded_above": "[ True  True  True  True]",
        "low_repr": "-1.0",
        "high_repr": "1.0",
        "_np_random": "Generator(PCG64)"
    },
    "n_envs": 1,
    "buffer_size": 1000000,
    "batch_size": 512,
    "learning_starts": 100,
    "tau": 0.05,
    "gamma": 0.95,
    "gradient_steps": 1,
    "optimize_memory_usage": false,
    "replay_buffer_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
        "__module__": "stable_baselines3.her.her_replay_buffer",
        "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
        "__doc__": "\n    Hindsight Experience Replay (HER) buffer.\n    Paper: https://arxiv.org/abs/1707.01495\n\n    Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n    .. note::\n\n      Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n      the current transition can be used when re-sampling.\n\n    :param buffer_size: Max number of element in the buffer\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param env: The training environment\n    :param device: PyTorch device\n    :param n_envs: Number of parallel environments\n    :param optimize_memory_usage: Enable a memory efficient variant\n        Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n    :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n        separately and treat the task as infinite horizon task.\n        https://github.com/DLR-RM/stable-baselines3/issues/284\n    :param n_sampled_goal: Number of virtual transitions to create per real transition,\n        by sampling new goals.\n    :param goal_selection_strategy: Strategy for sampling goals for replay.\n        One of ['episode', 'final', 'future']\n    :param copy_info_dict: Whether to copy the info dictionary and pass it to\n        ``compute_reward()`` method.\n        Please note that the copy may cause a slowdown.\n        False by default.\n    ",
        "__init__": "<function HerReplayBuffer.__init__ at 0x000001BDEC6FC720>",
        "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x000001BDEC6FC7C0>",
        "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x000001BDEC6FC860>",
        "set_env": "<function HerReplayBuffer.set_env at 0x000001BDEC6FC900>",
        "add": "<function HerReplayBuffer.add at 0x000001BDEC6FCA40>",
        "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x000001BDEC6FCAE0>",
        "sample": "<function HerReplayBuffer.sample at 0x000001BDEC6FCB80>",
        "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x000001BDEC6FCC20>",
        "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x000001BDEC6FCCC0>",
        "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x000001BDEC6FCD60>",
        "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x000001BDEC6FCE00>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x000001BDEC7085C0>"
    },
    "replay_buffer_kwargs": {
        "n_sampled_goal": 4,
        "goal_selection_strategy": "future"
    },
    "n_steps": 1,
    "train_freq": {
        ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
        ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
    },
    "use_sde_at_warmup": false,
    "target_entropy": -4.0,
    "ent_coef": "auto",
    "target_update_interval": 1,
    "lr_schedule": {
        ":type:": "<class 'stable_baselines3.common.utils.FloatSchedule'>",
        ":serialized:": "gAWVeQAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMDUZsb2F0U2NoZWR1bGWUk5QpgZR9lIwOdmFsdWVfc2NoZWR1bGWUaACMEENvbnN0YW50U2NoZWR1bGWUk5QpgZR9lIwDdmFslEc/UGJN0vGp/HNic2Iu",
        "value_schedule": "ConstantSchedule(val=0.001)"
    },
    "batch_norm_stats": [],
    "batch_norm_stats_target": []
}