File size: 14,495 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import torch
from torch import nn
import torch.nn.functional as F
import os
__all__ = ['HRNet', 'hrnetv2_48', 'hrnetv2_32']
# Checkpoint path of pre-trained backbone (edit to your path). Download backbone pretrained model hrnetv2-32 @
# https://drive.google.com/file/d/1NxCK7Zgn5PmeS7W1jYLt5J9E0RRZ2oyF/view?usp=sharing .Personally, I added the backbone
# weights to the folder /checkpoints
model_urls = {
'hrnetv2_32': './checkpoints/model_best_epoch96_edit.pth',
'hrnetv2_48': None
}
def check_pth(arch):
CKPT_PATH = model_urls[arch]
if os.path.exists(CKPT_PATH):
print(f"Backbone HRNet Pretrained weights at: {CKPT_PATH}, only usable for HRNetv2-32")
else:
print("No backbone checkpoint found for HRNetv2, please set pretrained=False when calling model")
return CKPT_PATH
# HRNetv2-48 not available yet, but you can train the whole model from scratch.
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class StageModule(nn.Module):
def __init__(self, stage, output_branches, c):
super(StageModule, self).__init__()
self.number_of_branches = stage # number of branches is equivalent to the stage configuration.
self.output_branches = output_branches
self.branches = nn.ModuleList()
# Note: Resolution + Number of channels maintains the same throughout respective branch.
for i in range(self.number_of_branches): # Stage scales with the number of branches. Ex: Stage 2 -> 2 branch
channels = c * (2 ** i) # Scale channels by 2x for branch with lower resolution,
# Paper does x4 basic block for each forward sequence in each branch (x4 basic block considered as a block)
branch = nn.Sequential(*[BasicBlock(channels, channels) for _ in range(4)])
self.branches.append(branch) # list containing all forward sequence of individual branches.
# For each branch requires repeated fusion with all other branches after passing through x4 basic blocks.
self.fuse_layers = nn.ModuleList()
for branch_output_number in range(self.output_branches):
self.fuse_layers.append(nn.ModuleList())
for branch_number in range(self.number_of_branches):
if branch_number == branch_output_number:
self.fuse_layers[-1].append(nn.Sequential()) # Used in place of "None" because it is callable
elif branch_number > branch_output_number:
self.fuse_layers[-1].append(nn.Sequential(
nn.Conv2d(c * (2 ** branch_number), c * (2 ** branch_output_number), kernel_size=1, stride=1,
bias=False),
nn.BatchNorm2d(c * (2 ** branch_output_number), eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True),
nn.Upsample(scale_factor=(2.0 ** (branch_number - branch_output_number)), mode='nearest'),
))
elif branch_number < branch_output_number:
downsampling_fusion = []
for _ in range(branch_output_number - branch_number - 1):
downsampling_fusion.append(nn.Sequential(
nn.Conv2d(c * (2 ** branch_number), c * (2 ** branch_number), kernel_size=3, stride=2,
padding=1,
bias=False),
nn.BatchNorm2d(c * (2 ** branch_number), eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True),
nn.ReLU(inplace=True),
))
downsampling_fusion.append(nn.Sequential(
nn.Conv2d(c * (2 ** branch_number), c * (2 ** branch_output_number), kernel_size=3,
stride=2, padding=1,
bias=False),
nn.BatchNorm2d(c * (2 ** branch_output_number), eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True),
))
self.fuse_layers[-1].append(nn.Sequential(*downsampling_fusion))
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
# input to each stage is a list of inputs for each branch
x = [branch(branch_input) for branch, branch_input in zip(self.branches, x)]
x_fused = []
for branch_output_index in range(
self.output_branches): # Amount of output branches == total length of fusion layers
for input_index in range(self.number_of_branches): # The inputs of other branches to be fused.
if input_index == 0:
x_fused.append(self.fuse_layers[branch_output_index][input_index](x[input_index]))
else:
x_fused[branch_output_index] = x_fused[branch_output_index] + self.fuse_layers[branch_output_index][
input_index](x[input_index])
# After fusing all streams together, you will need to pass the fused layers
for i in range(self.output_branches):
x_fused[i] = self.relu(x_fused[i])
return x_fused # returning a list of fused outputs
class HRNet(nn.Module):
def __init__(self, c=48, num_blocks=[1, 4, 3], num_classes=1000):
super(HRNet, self).__init__()
# Stem:
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64, eps=1e-05, affine=True, track_running_stats=True)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64, eps=1e-05, affine=True, track_running_stats=True)
self.relu = nn.ReLU(inplace=True)
# Stage 1:
downsample = nn.Sequential(
nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(256, eps=1e-05, affine=True, track_running_stats=True),
)
# Note that bottleneck module will expand the output channels according to the output channels*block.expansion
bn_expansion = Bottleneck.expansion # The channel expansion is set in the bottleneck class.
self.layer1 = nn.Sequential(
Bottleneck(64, 64, downsample=downsample), # Input is 64 for first module connection
Bottleneck(bn_expansion * 64, 64),
Bottleneck(bn_expansion * 64, 64),
Bottleneck(bn_expansion * 64, 64),
)
# Transition 1 - Creation of the first two branches (one full and one half resolution)
# Need to transition into high resolution stream and mid resolution stream
self.transition1 = nn.ModuleList([
nn.Sequential(
nn.Conv2d(256, c, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(c, eps=1e-05, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
),
nn.Sequential(nn.Sequential( # Double Sequential to fit with official pretrained weights
nn.Conv2d(256, c * 2, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(c * 2, eps=1e-05, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
)),
])
# Stage 2:
number_blocks_stage2 = num_blocks[0]
self.stage2 = nn.Sequential(
*[StageModule(stage=2, output_branches=2, c=c) for _ in range(number_blocks_stage2)])
# Transition 2 - Creation of the third branch (1/4 resolution)
self.transition2 = self._make_transition_layers(c, transition_number=2)
# Stage 3:
number_blocks_stage3 = num_blocks[1] # number blocks you want to create before fusion
self.stage3 = nn.Sequential(
*[StageModule(stage=3, output_branches=3, c=c) for _ in range(number_blocks_stage3)])
# Transition - Creation of the fourth branch (1/8 resolution)
self.transition3 = self._make_transition_layers(c, transition_number=3)
# Stage 4:
number_blocks_stage4 = num_blocks[2] # number blocks you want to create before fusion
self.stage4 = nn.Sequential(
*[StageModule(stage=4, output_branches=4, c=c) for _ in range(number_blocks_stage4)])
# Classifier (extra module if want to use for classification):
# pool, reduce dimensionality, flatten, connect to linear layer for classification:
out_channels = sum([c * 2 ** i for i in range(len(num_blocks)+1)]) # total output channels of HRNetV2
pool_feature_map = 8
self.bn_classifier = nn.Sequential(
nn.Conv2d(out_channels, out_channels // 4, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels // 4, eps=1e-05, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(pool_feature_map),
nn.Flatten(),
nn.Linear(pool_feature_map * pool_feature_map * (out_channels // 4), num_classes),
)
@staticmethod
def _make_transition_layers(c, transition_number):
return nn.Sequential(
nn.Conv2d(c * (2 ** (transition_number - 1)), c * (2 ** transition_number), kernel_size=3, stride=2,
padding=1, bias=False),
nn.BatchNorm2d(c * (2 ** transition_number), eps=1e-05, affine=True,
track_running_stats=True),
nn.ReLU(inplace=True),
)
def forward(self, x):
# Stem:
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
# Stage 1
x = self.layer1(x)
x = [trans(x) for trans in self.transition1] # split to 2 branches, form a list.
# Stage 2
x = self.stage2(x)
x.append(self.transition2(x[-1]))
# Stage 3
x = self.stage3(x)
x.append(self.transition3(x[-1]))
# Stage 4
x = self.stage4(x)
# HRNetV2 Example: (follow paper, upsample via bilinear interpolation and to highest resolution size)
output_h, output_w = x[0].size(2), x[0].size(3) # Upsample to size of highest resolution stream
x1 = F.interpolate(x[1], size=(output_h, output_w), mode='bilinear', align_corners=False)
x2 = F.interpolate(x[2], size=(output_h, output_w), mode='bilinear', align_corners=False)
x3 = F.interpolate(x[3], size=(output_h, output_w), mode='bilinear', align_corners=False)
# Upsampling all the other resolution streams and then concatenate all (rather than adding/fusing like HRNetV1)
x = torch.cat([x[0], x1, x2, x3], dim=1)
x = self.bn_classifier(x)
return x
def _hrnet(arch, channels, num_blocks, pretrained, progress, **kwargs):
model = HRNet(channels, num_blocks, **kwargs)
if pretrained:
CKPT_PATH = check_pth(arch)
checkpoint = torch.load(CKPT_PATH)
model.load_state_dict(checkpoint['state_dict'])
return model
def hrnetv2_48(pretrained=False, progress=True, number_blocks=[1, 4, 3], **kwargs):
w_channels = 48
return _hrnet('hrnetv2_48', w_channels, number_blocks, pretrained, progress,
**kwargs)
def hrnetv2_32(pretrained=False, progress=True, number_blocks=[1, 4, 3], **kwargs):
w_channels = 32
return _hrnet('hrnetv2_32', w_channels, number_blocks, pretrained, progress,
**kwargs)
if __name__ == '__main__':
try:
CKPT_PATH = os.path.join(os.path.abspath("."), '../../checkpoints/hrnetv2_32_model_best_epoch96.pth')
print("--- Running file as MAIN ---")
print(f"Backbone HRNET Pretrained weights as __main__ at: {CKPT_PATH}")
except:
print("No backbone checkpoint found for HRNetv2, please set pretrained=False when calling model")
# Models
model = hrnetv2_32(pretrained=True)
#model = hrnetv2_48(pretrained=False)
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
device = torch.device('cuda')
else:
device = torch.device('cpu')
model.to(device)
in_ = torch.ones(1, 3, 768, 768).to(device)
y = model(in_)
print(y.shape)
# Calculate total number of parameters:
# pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
# print(pytorch_total_params)
|