|
import gradio as gr
|
|
import tensorflow as tf
|
|
import cv2
|
|
|
|
|
|
model = tf.keras.models.load_model(r"C:/Users/Irfan Arshad/Downloads/alexnet_cifar10.h5")
|
|
|
|
|
|
def predict(image):
|
|
|
|
image = cv2.resize(image, (32, 32))
|
|
print("Resized image shape:", image.shape)
|
|
|
|
image = image.astype('float32') / 255.0
|
|
|
|
image = tf.expand_dims(image, 0)
|
|
|
|
prediction = model.predict(image)
|
|
class_index = tf.argmax(prediction, axis=1)[0].numpy()
|
|
class_label = class_names[class_index]
|
|
return class_label
|
|
|
|
|
|
class_names = [
|
|
"airplane", "automobile", "bird", "cat", "deer",
|
|
"dog", "frog", "horse", "ship", "truck"
|
|
]
|
|
|
|
gr.Interface(fn=predict, inputs='image', outputs='text').launch() |