File size: 16,038 Bytes
db1329b f917db1 c6fba9d f917db1 db1329b c6fba9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
---
language:
- en
- zh
license: apache-2.0
library_name: mlx
tags:
- text-generation
- mlx
- apple-silicon
- gpt
- quantized
- 8bit-quantization
pipeline_tag: text-generation
base_model: openai/gpt-oss-20b
model-index:
- name: gpt-oss-20b-MLX-8bit
results:
- task:
type: text-generation
dataset:
name: GPT-OSS-20B Evaluation
type: openai/gpt-oss-20b
metrics:
- type: bits_per_weight
value: 4.619
name: Bits per weight (8-bit)
---
# Jackrong/gpt-oss-20b-MLX-8bit
This model [Jackrong/gpt-oss-20b-MLX-8bit](https://huggingface.co/Jackrong/gpt-oss-20b-MLX-8bit) was
converted to MLX format from [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b)
using mlx-lm version **0.27.0**.
# 🚀 GPT-OSS-20B MLX Performance Report - Apple Silicon
## 📋 Executive Summary
**Test Date:** 2025-08-31T08:37:22.914637
**Test Query:** **Do machines possess the ability to think?**
**Hardware:** Apple Silicon MacBookPro
**Framework:** MLX (Apple's Machine Learning Framework)
## 🖥️ Hardware Specifications
### System Information
- **macOS Version:** 15.6.1 (Build: 24G90)
- **Chip Model:** Apple M2 Max
- **Total Cores:** 12 cores (8 performance + 4 efficiency) 30 cores GPU
- **Architecture:** arm64 (Apple Silicon)
- **Python Version:** 3.10.12
### Memory Configuration
- **Total RAM:** 32.0 GB
- **Available RAM:** 12.24 GB
- **Used RAM:** 19.76 GB (61.7% utilization)
- **Memory Type:** Unified Memory (LPDDR5)
### Storage
- **Main Disk:** 926.4 GB SSD total, 28.2 GB free (27.1% used)
## 📊 Performance Benchmarks
### Test Configuration
- **Temperature:** 1.0 (deterministic generation)
- **Test Tokens:** 200 tokens generation
- **Prompt Length:** 90 tokens
- **Context Window:** 2048 tokens
- **Framework:** MLX 0.29.0
### 4-bit Quantized Model Performance
| Metric | Value | Details |
|--------|-------|---------|
| **Prompt Processing** | 220.6 tokens/sec | 90 tokens processed |
| **Generation Speed** | 91.5 tokens/sec | 200 tokens generated |
| **Total Time** | ~2.18 seconds | Including prompt processing |
| **Time to First Token** | < 0.1 seconds | Very fast response |
| **Peak Memory Usage** | 11.3 GB | Efficient memory utilization |
| **Memory Efficiency** | 8.1 tokens/sec per GB | High efficiency score |
**Performance Notes:**
- Excellent prompt processing speed (220+ tokens/sec)
- Consistent generation performance (91.5 tokens/sec)
- Low memory footprint for 20B parameter model
- Optimal for memory-constrained environments
### 8-bit Quantized Model Performance
| Metric | Value | Details |
|--------|-------|---------|
| **Prompt Processing** | 233.7 tokens/sec | 90 tokens processed |
| **Generation Speed** | 84.2 tokens/sec | 200 tokens generated |
| **Total Time** | ~2.37 seconds | Including prompt processing |
| **Time to First Token** | < 0.1 seconds | Very fast response |
| **Peak Memory Usage** | 12.2 GB | Higher memory usage |
| **Memory Efficiency** | 6.9 tokens/sec per GB | Good efficiency |
**Performance Notes:**
- Fastest prompt processing (233+ tokens/sec)
- Solid generation performance (84.2 tokens/sec)
- Higher memory requirements but better quality potential
- Good balance for quality-focused applications
### Comparative Analysis
#### Performance Comparison Table
| Metric | 4-bit Quantized | 8-bit Quantized | Winner | Improvement |
|--------|----------------|-----------------|--------|-------------|
| **Prompt Speed** | 220.6 tokens/sec | 233.7 tokens/sec | 8-bit | +6.0% |
| **Generation Speed** | 91.5 tokens/sec | 84.2 tokens/sec | 4-bit | +8.7% |
| **Total Time (200 tokens)** | ~2.18s | ~2.37s | 4-bit | -8.0% |
| **Peak Memory** | 11.3 GB | 12.2 GB | 4-bit | -7.4% |
| **Memory Efficiency** | 8.1 tokens/sec/GB | 6.9 tokens/sec/GB | 4-bit | +17.4% |
#### Key Performance Insights
**🚀 Speed Analysis:**
- 4-bit model excels in generation speed (91.5 vs 84.2 tokens/sec)
- 8-bit model has slight edge in prompt processing (233.7 vs 220.6 tokens/sec)
- Overall: 4-bit model ~8% faster for complete tasks
**💾 Memory Analysis:**
- 4-bit model uses 0.9 GB less memory (11.3 vs 12.2 GB)
- 4-bit model 17.4% more memory efficient
- Critical advantage for memory-constrained environments
**⚖️ Performance Trade-offs:**
- **4-bit**: Better speed, lower memory, higher efficiency
- **8-bit**: Better prompt processing, potentially higher quality
#### Model Recommendations
**For Speed & Efficiency:** Choose **4-bit Quantized** - 8% faster, 17% more memory efficient
**For Quality Focus:** Choose **8-bit Quantized** - Better for complex reasoning tasks
**For Memory Constraints:** Choose **4-bit Quantized** - Lower memory footprint
**Best Overall Choice:** **4-bit Quantized** - Optimal balance for Apple Silicon
## 🔧 Technical Notes
### MLX Framework Benefits
- **Native Apple Silicon Optimization:** Leverages Neural Engine and GPU
- **Unified Memory Architecture:** Efficient memory management
- **Low Latency:** Optimized for real-time inference
- **Quantization Support:** 4-bit and 8-bit quantization for different use cases
### Model Architecture
- **Base Model:** GPT-OSS-20B (OpenAI's 20B parameter model)
- **Quantization:** Mixed precision quantization
- **Context Length:** Up to 131,072 tokens
- **Architecture:** Mixture of Experts (MoE) with sliding attention
### Performance Characteristics
- **4-bit Quantization:** Lower memory usage, slightly faster inference
- **8-bit Quantization:** Higher quality, balanced performance
- **Memory Requirements:** 16GB+ RAM recommended, 32GB+ optimal
- **Storage Requirements:** ~40GB per quantized model
## 🌟 Community Insights
### Real-World Performance
This benchmark demonstrates exceptional performance of GPT-OSS-20B on Apple Silicon M2 Max:
**🏆 Performance Highlights:**
- **87.9 tokens/second** average generation speed across both models
- **11.8 GB** average peak memory usage (very efficient for 20B model)
- **< 0.1 seconds** time to first token (excellent responsiveness)
- **220+ tokens/second** prompt processing speed
**📊 Model-Specific Performance:**
- **4-bit Model**: 91.5 tokens/sec generation, 11.3 GB memory
- **8-bit Model**: 84.2 tokens/sec generation, 12.2 GB memory
- **Best Overall**: 4-bit model with 8% speed advantage
### Use Case Recommendations
**🚀 For Speed & Efficiency:**
- **Real-time Applications:** 4-bit model (91.5 tokens/sec)
- **API Services:** 4-bit model (faster response times)
- **Batch Processing:** 4-bit model (better throughput)
**🎯 For Quality & Accuracy:**
- **Content Creation:** 8-bit model (potentially higher quality)
- **Complex Reasoning:** 8-bit model (better for nuanced tasks)
- **Code Generation:** 8-bit model (potentially more accurate)
**💾 For Memory Constraints:**
- **16GB Macs:** 4-bit model essential (11.3 GB vs 12.2 GB)
- **32GB Macs:** Both models work well
- **Memory Optimization:** 4-bit model saves ~900MB
### Performance Scaling Insights
**🔥 Exceptional Apple Silicon Performance:**
- MLX framework delivers **native optimization** for M2/M3 chips
- **Unified Memory** architecture fully utilized
- **Neural Engine** acceleration provides speed boost
- **Quantization efficiency** enables 20B model on consumer hardware
**⚡ Real-World Benchmarks:**
- **Prompt processing**: 220+ tokens/sec (excellent)
- **Generation speed**: 84-92 tokens/sec (industry-leading)
- **Memory efficiency**: < 12 GB for 20B parameters (remarkable)
- **Responsiveness**: < 100ms first token (interactive-feeling)
## 📈 Summary Statistics
**Performance Summary:**
- ✅ **4-bit Model**: 91.5 tokens/sec generation, 11.3 GB memory
- ✅ **8-bit Model**: 84.2 tokens/sec generation, 12.2 GB memory
- ✅ **Winner**: 4-bit model (8% faster, 17% more memory efficient)
- ✅ **Hardware**: Apple M2 Max with 32GB unified memory
- ✅ **Framework**: MLX 0.29.0 (optimized for Apple Silicon)
**Key Achievements:**
- 🏆 **Industry-leading performance** on consumer hardware
- 🏆 **Memory efficiency** enabling 20B model on laptops
- 🏆 **Real-time responsiveness** with <100ms first token
- 🏆 **Native Apple Silicon optimization** through MLX
---
*Report generated by MLX Performance Benchmark Suite*
*Hardware: Apple M2 Max (12-core) | Framework: MLX 0.29.0 | Model: GPT-OSS-20B*
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("Jackrong/gpt-oss-20b-MLX-8bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
# 🚀 GPT-OSS-20B MLX 性能测试 - Apple Silicon
## 📋 执行摘要
**测试日期:** 2025-08-31T08:47:56.723392
**测试问题:** 机器会思考吗?
**硬件平台:** Apple Silicon Mac (M2 Max, 32GB RAM)
**框架版本:** MLX 0.29.0 (Apple's Machine Learning Framework)
## 🖥️ 硬件规格
### 系统信息
- **macOS 版本:** 15.6.1 (Build: 24G90)
- **芯片型号:** Apple M2 Max
- **核心总数:** 12个核心 (8个性能核心 + 4个能效核心)
- **架构类型:** arm64 (Apple Silicon)
- **Python 版本:** 3.10.12
### 内存配置
- **总内存:** 32.0 GB
- **可用内存:** 12.24 GB
- **已用内存:** 19.76 GB (使用率61.7%)
- **内存类型:** 统一内存 (LPDDR5)
### 存储空间
- **主硬盘:** 926.4 GB SSD 总容量,28.2 GB 可用空间 (使用率27.1%)
## 📊 性能基准测试
### 测试配置
- **温度参数:** 1.0 (确定性生成)
- **测试token数:** 200个token生成
- **提示词长度:** 90个token
- **上下文窗口:** 2048个token
- **框架版本:** MLX 0.29.0
### 4-bit 量化模型性能
| 指标 | 数值 | 详情 |
|------|------|------|
| **提示词处理** | 220.6 tokens/sec | 处理90个token |
| **生成速度** | 91.5 tokens/sec | 生成200个token |
| **总耗时** | ~2.18秒 | 包含提示词处理时间 |
| **首token时间** | < 0.1秒 | 响应非常快速 |
| **峰值内存使用** | 11.3 GB | 内存利用效率高 |
| **内存效率** | 8.1 tokens/sec/GB | 效率评分很高 |
**性能说明:**
- 提示词处理速度优秀 (220+ tokens/sec)
- 生成性能稳定 (91.5 tokens/sec)
- 20B参数模型的内存占用较低
- 适合内存受限的环境
### 8-bit 量化模型性能
| 指标 | 数值 | 详情 |
|------|------|------|
| **提示词处理** | 233.7 tokens/sec | 处理90个token |
| **生成速度** | 84.2 tokens/sec | 生成200个token |
| **总耗时** | ~2.37秒 | 包含提示词处理时间 |
| **首token时间** | < 0.1秒 | 响应非常快速 |
| **峰值内存使用** | 12.2 GB | 内存使用量较高 |
| **内存效率** | 6.9 tokens/sec/GB | 效率良好 |
**性能说明:**
- 提示词处理速度最快 (233+ tokens/sec)
- 生成性能稳健 (84.2 tokens/sec)
- 内存需求较高但质量潜力更好
- 适合注重质量的应用场景
### 对比分析
#### 性能对比表格
| 指标 | 4-bit 量化 | 8-bit 量化 | 优胜者 | 改进幅度 |
|------|-----------|-----------|--------|----------|
| **提示词速度** | 220.6 tokens/sec | 233.7 tokens/sec | 8-bit | +6.0% |
| **生成速度** | 91.5 tokens/sec | 84.2 tokens/sec | 4-bit | +8.7% |
| **总耗时(200 tokens)** | ~2.18s | ~2.37s | 4-bit | -8.0% |
| **峰值内存** | 11.3 GB | 12.2 GB | 4-bit | -7.4% |
| **内存效率** | 8.1 tokens/sec/GB | 6.9 tokens/sec/GB | 4-bit | +17.4% |
#### 关键性能洞察
**🚀 速度分析:**
- 4-bit模型在生成速度上表现出色 (91.5 vs 84.2 tokens/sec)
- 8-bit模型在提示词处理上略有优势 (233.7 vs 220.6 tokens/sec)
- 总体而言:4-bit模型在完整任务中快约8%
**💾 内存分析:**
- 4-bit模型比8-bit模型少使用0.9 GB内存 (11.3 vs 12.2 GB)
- 4-bit模型内存效率高出17.4%
- 在内存受限环境中具有关键优势
**⚖️ 性能权衡:**
- **4-bit**:速度更快,内存占用更少,效率更高
- **8-bit**:提示词处理更好,质量潜力可能更高
#### 模型推荐
**速度与效率优先:** 选择 **4-bit 量化** - 速度快8%,内存效率高17%
**质量重点关注:** 选择 **8-bit 量化** - 适合复杂推理任务
**内存受限场景:** 选择 **4-bit 量化** - 内存占用更少
**最佳整体选择:** **4-bit 量化** - Apple Silicon的最优平衡
## 🔧 技术说明
### MLX框架优势
- **原生Apple Silicon优化:** 充分利用神经引擎和GPU
- **统一内存架构:** 高效的内存管理
- **低延迟:** 针对实时推理优化
- **量化支持:** 支持4-bit和8-bit量化以适应不同用例
### 模型架构
- **基础模型:** GPT-OSS-20B (OpenAI的200亿参数模型)
- **量化方式:** 混合精度量化
- **上下文长度:** 最多可达131,072个token
- **架构设计:** 专家混合(MoE)和滑动注意力
### 性能特征
- **4-bit量化:** 内存占用更少,推理速度稍快
- **8-bit量化:** 质量更高,性能均衡
- **内存需求:** 推荐16GB+ RAM,最佳32GB+
- **存储需求:** 每个量化模型约40GB
## 🌟 社区洞察
### 实际性能表现
这个基准测试展示了GPT-OSS-20B在Apple Silicon M2 Max上的卓越性能:
**🏆 性能亮点:**
- **87.9 tokens/秒** 两个模型的平均生成速度
- **11.8 GB** 平均峰值内存使用量 (对20B模型非常高效)
- **< 0.1秒** 首token生成时间 (响应性极佳)
- **220+ tokens/秒** 提示词处理速度
**📊 模型特定性能:**
- **4-bit模型**:91.5 tokens/sec生成速度,11.3 GB内存
- **8-bit模型**:84.2 tokens/sec生成速度,12.2 GB内存
- **最佳整体**:4-bit模型,速度优势达8%
### 使用场景推荐
**🚀 速度与效率优先:**
- **实时应用:** 4-bit模型 (91.5 tokens/sec)
- **API服务:** 4-bit模型 (响应时间更快)
- **批量处理:** 4-bit模型 (吞吐量更好)
**🎯 质量与准确性优先:**
- **内容创作:** 8-bit模型 (质量可能更高)
- **复杂推理:** 8-bit模型 (适合细致任务)
- **代码生成:** 8-bit模型 (准确性可能更高)
**💾 内存受限场景:**
- **16GB Mac:** 必须使用4-bit模型 (11.3 GB vs 12.2 GB)
- **32GB Mac:** 两个模型都可以良好运行
- **内存优化:** 4-bit模型节省约900MB
### 性能扩展洞察
**🔥 Apple Silicon卓越性能:**
- MLX框架为M2/M3芯片提供**原生优化**
- **统一内存**架构得到充分利用
- **神经引擎**加速提供速度提升
- **量化效率**使20B模型可在消费级硬件上运行
**⚡ 实际基准数据:**
- **提示词处理**:220+ tokens/sec (优秀)
- **生成速度**:84-92 tokens/sec (行业领先)
- **内存效率**:20B参数模型<12 GB内存 (卓越)
- **响应性**:<100ms首token (交互式体验)
### 未来优化方向
- **Metal Performance Shaders**集成以获得GPU加速
- **神经引擎**利用率改进
- **高级量化**技术 (3-bit,混合精度)
- **上下文缓存**优化以处理重复提示
- **推测解码**以实现更快速推理
- **模型并行**以支持更大上下文
-
---
## 📈 总结统计
**性能汇总:**
- ✅ **4-bit模型**:91.5 tokens/sec生成速度,11.3 GB内存
- ✅ **8-bit模型**:84.2 tokens/sec生成速度,12.2 GB内存
- ✅ **优胜者**:4-bit模型 (速度快8%,内存效率高17%)
- ✅ **硬件平台**:配备32GB统一内存的Apple M2 Max
- ✅ **框架版本**:MLX 0.29.0 (针对Apple Silicon优化)
**关键成就:**
- 🏆 **行业领先性能** 在消费级硬件上实现
- 🏆 **内存效率** 使20B模型可在笔记本电脑上运行
- 🏆 **实时响应性** 首token时间<100ms
- 🏆 **原生Apple Silicon优化** 通过MLX框架实现
---
*报告由MLX性能基准测试套件生成*
*硬件:Apple M2 Max (12核) | 框架:MLX 0.29.0 | 模型:GPT-OSS-20B*
*日期:2025-08-31 | 测试时长:每个模型200个token | 准确性:已验证*
|