File size: 16,038 Bytes
db1329b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f917db1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6fba9d
f917db1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1329b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6fba9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
---
language:
- en
- zh
license: apache-2.0
library_name: mlx
tags:
- text-generation
- mlx
- apple-silicon
- gpt
- quantized
- 8bit-quantization
pipeline_tag: text-generation
base_model: openai/gpt-oss-20b
model-index:
- name: gpt-oss-20b-MLX-8bit
  results:
  - task:
      type: text-generation
    dataset:
      name: GPT-OSS-20B Evaluation
      type: openai/gpt-oss-20b
    metrics:
    - type: bits_per_weight
      value: 4.619
      name: Bits per weight (8-bit)
---

# Jackrong/gpt-oss-20b-MLX-8bit

This model [Jackrong/gpt-oss-20b-MLX-8bit](https://huggingface.co/Jackrong/gpt-oss-20b-MLX-8bit) was
converted to MLX format from [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b)
using mlx-lm version **0.27.0**.

# 🚀 GPT-OSS-20B MLX Performance Report - Apple Silicon

## 📋 Executive Summary

**Test Date:** 2025-08-31T08:37:22.914637  
**Test Query:** **Do machines possess the ability to think?**

**Hardware:** Apple Silicon MacBookPro
**Framework:** MLX (Apple's Machine Learning Framework) 

## 🖥️ Hardware Specifications

### System Information
- **macOS Version:** 15.6.1 (Build: 24G90)
- **Chip Model:** Apple M2 Max
- **Total Cores:** 12 cores (8 performance + 4 efficiency)  30 cores GPU
- **Architecture:** arm64 (Apple Silicon)
- **Python Version:** 3.10.12

### Memory Configuration
- **Total RAM:** 32.0 GB
- **Available RAM:** 12.24 GB
- **Used RAM:** 19.76 GB (61.7% utilization)
- **Memory Type:** Unified Memory (LPDDR5)

### Storage
- **Main Disk:** 926.4 GB SSD total, 28.2 GB free (27.1% used)
## 📊 Performance Benchmarks

### Test Configuration
- **Temperature:** 1.0 (deterministic generation)
- **Test Tokens:** 200 tokens generation
- **Prompt Length:** 90 tokens
- **Context Window:** 2048 tokens
- **Framework:** MLX 0.29.0

### 4-bit Quantized Model Performance

| Metric | Value | Details |
|--------|-------|---------|
| **Prompt Processing** | 220.6 tokens/sec | 90 tokens processed |
| **Generation Speed** | 91.5 tokens/sec | 200 tokens generated |
| **Total Time** | ~2.18 seconds | Including prompt processing |
| **Time to First Token** | < 0.1 seconds | Very fast response |
| **Peak Memory Usage** | 11.3 GB | Efficient memory utilization |
| **Memory Efficiency** | 8.1 tokens/sec per GB | High efficiency score |

**Performance Notes:**
- Excellent prompt processing speed (220+ tokens/sec)
- Consistent generation performance (91.5 tokens/sec)
- Low memory footprint for 20B parameter model
- Optimal for memory-constrained environments

### 8-bit Quantized Model Performance

| Metric | Value | Details |
|--------|-------|---------|
| **Prompt Processing** | 233.7 tokens/sec | 90 tokens processed |
| **Generation Speed** | 84.2 tokens/sec | 200 tokens generated |
| **Total Time** | ~2.37 seconds | Including prompt processing |
| **Time to First Token** | < 0.1 seconds | Very fast response |
| **Peak Memory Usage** | 12.2 GB | Higher memory usage |
| **Memory Efficiency** | 6.9 tokens/sec per GB | Good efficiency |

**Performance Notes:**
- Fastest prompt processing (233+ tokens/sec)
- Solid generation performance (84.2 tokens/sec)
- Higher memory requirements but better quality potential
- Good balance for quality-focused applications

### Comparative Analysis

#### Performance Comparison Table

| Metric | 4-bit Quantized | 8-bit Quantized | Winner | Improvement |
|--------|----------------|-----------------|--------|-------------|
| **Prompt Speed** | 220.6 tokens/sec | 233.7 tokens/sec | 8-bit | +6.0% |
| **Generation Speed** | 91.5 tokens/sec | 84.2 tokens/sec | 4-bit | +8.7% |
| **Total Time (200 tokens)** | ~2.18s | ~2.37s | 4-bit | -8.0% |
| **Peak Memory** | 11.3 GB | 12.2 GB | 4-bit | -7.4% |
| **Memory Efficiency** | 8.1 tokens/sec/GB | 6.9 tokens/sec/GB | 4-bit | +17.4% |

#### Key Performance Insights

**🚀 Speed Analysis:**
- 4-bit model excels in generation speed (91.5 vs 84.2 tokens/sec)
- 8-bit model has slight edge in prompt processing (233.7 vs 220.6 tokens/sec)
- Overall: 4-bit model ~8% faster for complete tasks

**💾 Memory Analysis:**
- 4-bit model uses 0.9 GB less memory (11.3 vs 12.2 GB)
- 4-bit model 17.4% more memory efficient
- Critical advantage for memory-constrained environments

**⚖️ Performance Trade-offs:**
- **4-bit**: Better speed, lower memory, higher efficiency
- **8-bit**: Better prompt processing, potentially higher quality

#### Model Recommendations

**For Speed & Efficiency:** Choose **4-bit Quantized** - 8% faster, 17% more memory efficient
**For Quality Focus:** Choose **8-bit Quantized** - Better for complex reasoning tasks
**For Memory Constraints:** Choose **4-bit Quantized** - Lower memory footprint
**Best Overall Choice:** **4-bit Quantized** - Optimal balance for Apple Silicon

## 🔧 Technical Notes

### MLX Framework Benefits
- **Native Apple Silicon Optimization:** Leverages Neural Engine and GPU
- **Unified Memory Architecture:** Efficient memory management
- **Low Latency:** Optimized for real-time inference
- **Quantization Support:** 4-bit and 8-bit quantization for different use cases

### Model Architecture
- **Base Model:** GPT-OSS-20B (OpenAI's 20B parameter model)
- **Quantization:** Mixed precision quantization
- **Context Length:** Up to 131,072 tokens
- **Architecture:** Mixture of Experts (MoE) with sliding attention

### Performance Characteristics
- **4-bit Quantization:** Lower memory usage, slightly faster inference
- **8-bit Quantization:** Higher quality, balanced performance
- **Memory Requirements:** 16GB+ RAM recommended, 32GB+ optimal
- **Storage Requirements:** ~40GB per quantized model

## 🌟 Community Insights

### Real-World Performance
This benchmark demonstrates exceptional performance of GPT-OSS-20B on Apple Silicon M2 Max:

**🏆 Performance Highlights:**
- **87.9 tokens/second** average generation speed across both models
- **11.8 GB** average peak memory usage (very efficient for 20B model)
- **< 0.1 seconds** time to first token (excellent responsiveness)
- **220+ tokens/second** prompt processing speed

**📊 Model-Specific Performance:**
- **4-bit Model**: 91.5 tokens/sec generation, 11.3 GB memory
- **8-bit Model**: 84.2 tokens/sec generation, 12.2 GB memory
- **Best Overall**: 4-bit model with 8% speed advantage

### Use Case Recommendations

**🚀 For Speed & Efficiency:**
- **Real-time Applications:** 4-bit model (91.5 tokens/sec)
- **API Services:** 4-bit model (faster response times)
- **Batch Processing:** 4-bit model (better throughput)

**🎯 For Quality & Accuracy:**
- **Content Creation:** 8-bit model (potentially higher quality)
- **Complex Reasoning:** 8-bit model (better for nuanced tasks)
- **Code Generation:** 8-bit model (potentially more accurate)

**💾 For Memory Constraints:**
- **16GB Macs:** 4-bit model essential (11.3 GB vs 12.2 GB)
- **32GB Macs:** Both models work well
- **Memory Optimization:** 4-bit model saves ~900MB

### Performance Scaling Insights

**🔥 Exceptional Apple Silicon Performance:**
- MLX framework delivers **native optimization** for M2/M3 chips
- **Unified Memory** architecture fully utilized
- **Neural Engine** acceleration provides speed boost
- **Quantization efficiency** enables 20B model on consumer hardware

**⚡ Real-World Benchmarks:**
- **Prompt processing**: 220+ tokens/sec (excellent)
- **Generation speed**: 84-92 tokens/sec (industry-leading)
- **Memory efficiency**: < 12 GB for 20B parameters (remarkable)
- **Responsiveness**: < 100ms first token (interactive-feeling)

## 📈 Summary Statistics

**Performance Summary:**
-**4-bit Model**: 91.5 tokens/sec generation, 11.3 GB memory
-**8-bit Model**: 84.2 tokens/sec generation, 12.2 GB memory
-**Winner**: 4-bit model (8% faster, 17% more memory efficient)
-**Hardware**: Apple M2 Max with 32GB unified memory
-**Framework**: MLX 0.29.0 (optimized for Apple Silicon)

**Key Achievements:**
- 🏆 **Industry-leading performance** on consumer hardware
- 🏆 **Memory efficiency** enabling 20B model on laptops
- 🏆 **Real-time responsiveness** with <100ms first token
- 🏆 **Native Apple Silicon optimization** through MLX

---

*Report generated by MLX Performance Benchmark Suite*  
*Hardware: Apple M2 Max (12-core) | Framework: MLX 0.29.0 | Model: GPT-OSS-20B*  


## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("Jackrong/gpt-oss-20b-MLX-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```

# 🚀 GPT-OSS-20B MLX 性能测试 - Apple Silicon

## 📋 执行摘要

**测试日期:** 2025-08-31T08:47:56.723392
**测试问题:** 机器会思考吗?
**硬件平台:** Apple Silicon Mac (M2 Max, 32GB RAM)
**框架版本:** MLX 0.29.0 (Apple's Machine Learning Framework)

## 🖥️ 硬件规格

### 系统信息
- **macOS 版本:** 15.6.1 (Build: 24G90)
- **芯片型号:** Apple M2 Max
- **核心总数:** 12个核心 (8个性能核心 + 4个能效核心)
- **架构类型:** arm64 (Apple Silicon)
- **Python 版本:** 3.10.12

### 内存配置
- **总内存:** 32.0 GB
- **可用内存:** 12.24 GB
- **已用内存:** 19.76 GB (使用率61.7%)
- **内存类型:** 统一内存 (LPDDR5)

### 存储空间
- **主硬盘:** 926.4 GB SSD 总容量,28.2 GB 可用空间 (使用率27.1%)

## 📊 性能基准测试

### 测试配置
- **温度参数:** 1.0 (确定性生成)
- **测试token数:** 200个token生成
- **提示词长度:** 90个token
- **上下文窗口:** 2048个token
- **框架版本:** MLX 0.29.0

### 4-bit 量化模型性能

| 指标 | 数值 | 详情 |
|------|------|------|
| **提示词处理** | 220.6 tokens/sec | 处理90个token |
| **生成速度** | 91.5 tokens/sec | 生成200个token |
| **总耗时** | ~2.18秒 | 包含提示词处理时间 |
| **首token时间** | < 0.1秒 | 响应非常快速 |
| **峰值内存使用** | 11.3 GB | 内存利用效率高 |
| **内存效率** | 8.1 tokens/sec/GB | 效率评分很高 |

**性能说明:**
- 提示词处理速度优秀 (220+ tokens/sec)
- 生成性能稳定 (91.5 tokens/sec)
- 20B参数模型的内存占用较低
- 适合内存受限的环境

### 8-bit 量化模型性能

| 指标 | 数值 | 详情 |
|------|------|------|
| **提示词处理** | 233.7 tokens/sec | 处理90个token |
| **生成速度** | 84.2 tokens/sec | 生成200个token |
| **总耗时** | ~2.37秒 | 包含提示词处理时间 |
| **首token时间** | < 0.1秒 | 响应非常快速 |
| **峰值内存使用** | 12.2 GB | 内存使用量较高 |
| **内存效率** | 6.9 tokens/sec/GB | 效率良好 |

**性能说明:**
- 提示词处理速度最快 (233+ tokens/sec)
- 生成性能稳健 (84.2 tokens/sec)
- 内存需求较高但质量潜力更好
- 适合注重质量的应用场景

### 对比分析

#### 性能对比表格

| 指标 | 4-bit 量化 | 8-bit 量化 | 优胜者 | 改进幅度 |
|------|-----------|-----------|--------|----------|
| **提示词速度** | 220.6 tokens/sec | 233.7 tokens/sec | 8-bit | +6.0% |
| **生成速度** | 91.5 tokens/sec | 84.2 tokens/sec | 4-bit | +8.7% |
| **总耗时(200 tokens)** | ~2.18s | ~2.37s | 4-bit | -8.0% |
| **峰值内存** | 11.3 GB | 12.2 GB | 4-bit | -7.4% |
| **内存效率** | 8.1 tokens/sec/GB | 6.9 tokens/sec/GB | 4-bit | +17.4% |

#### 关键性能洞察

**🚀 速度分析:**
- 4-bit模型在生成速度上表现出色 (91.5 vs 84.2 tokens/sec)
- 8-bit模型在提示词处理上略有优势 (233.7 vs 220.6 tokens/sec)
- 总体而言:4-bit模型在完整任务中快约8%

**💾 内存分析:**
- 4-bit模型比8-bit模型少使用0.9 GB内存 (11.3 vs 12.2 GB)
- 4-bit模型内存效率高出17.4%
- 在内存受限环境中具有关键优势

**⚖️ 性能权衡:**
- **4-bit**:速度更快,内存占用更少,效率更高
- **8-bit**:提示词处理更好,质量潜力可能更高

#### 模型推荐

**速度与效率优先:** 选择 **4-bit 量化** - 速度快8%,内存效率高17%
**质量重点关注:** 选择 **8-bit 量化** - 适合复杂推理任务
**内存受限场景:** 选择 **4-bit 量化** - 内存占用更少
**最佳整体选择:** **4-bit 量化** - Apple Silicon的最优平衡

## 🔧 技术说明

### MLX框架优势
- **原生Apple Silicon优化:** 充分利用神经引擎和GPU
- **统一内存架构:** 高效的内存管理
- **低延迟:** 针对实时推理优化
- **量化支持:** 支持4-bit和8-bit量化以适应不同用例

### 模型架构
- **基础模型:** GPT-OSS-20B (OpenAI的200亿参数模型)
- **量化方式:** 混合精度量化
- **上下文长度:** 最多可达131,072个token
- **架构设计:** 专家混合(MoE)和滑动注意力

### 性能特征
- **4-bit量化:** 内存占用更少,推理速度稍快
- **8-bit量化:** 质量更高,性能均衡
- **内存需求:** 推荐16GB+ RAM,最佳32GB+
- **存储需求:** 每个量化模型约40GB

## 🌟 社区洞察

### 实际性能表现
这个基准测试展示了GPT-OSS-20B在Apple Silicon M2 Max上的卓越性能:

**🏆 性能亮点:**
- **87.9 tokens/秒** 两个模型的平均生成速度
- **11.8 GB** 平均峰值内存使用量 (对20B模型非常高效)
- **< 0.1秒** 首token生成时间 (响应性极佳)
- **220+ tokens/秒** 提示词处理速度

**📊 模型特定性能:**
- **4-bit模型**:91.5 tokens/sec生成速度,11.3 GB内存
- **8-bit模型**:84.2 tokens/sec生成速度,12.2 GB内存
- **最佳整体**:4-bit模型,速度优势达8%

### 使用场景推荐

**🚀 速度与效率优先:**
- **实时应用:** 4-bit模型 (91.5 tokens/sec)
- **API服务:** 4-bit模型 (响应时间更快)
- **批量处理:** 4-bit模型 (吞吐量更好)

**🎯 质量与准确性优先:**
- **内容创作:** 8-bit模型 (质量可能更高)
- **复杂推理:** 8-bit模型 (适合细致任务)
- **代码生成:** 8-bit模型 (准确性可能更高)

**💾 内存受限场景:**
- **16GB Mac:** 必须使用4-bit模型 (11.3 GB vs 12.2 GB)
- **32GB Mac:** 两个模型都可以良好运行
- **内存优化:** 4-bit模型节省约900MB

### 性能扩展洞察

**🔥 Apple Silicon卓越性能:**
- MLX框架为M2/M3芯片提供**原生优化**
- **统一内存**架构得到充分利用
- **神经引擎**加速提供速度提升
- **量化效率**使20B模型可在消费级硬件上运行

**⚡ 实际基准数据:**
- **提示词处理**:220+ tokens/sec (优秀)
- **生成速度**:84-92 tokens/sec (行业领先)
- **内存效率**:20B参数模型<12 GB内存 (卓越)
- **响应性**:<100ms首token (交互式体验)

### 未来优化方向
- **Metal Performance Shaders**集成以获得GPU加速
- **神经引擎**利用率改进
- **高级量化**技术 (3-bit,混合精度)
- **上下文缓存**优化以处理重复提示
- **推测解码**以实现更快速推理
- **模型并行**以支持更大上下文
- 
---

## 📈 总结统计

**性能汇总:**
-**4-bit模型**:91.5 tokens/sec生成速度,11.3 GB内存
-**8-bit模型**:84.2 tokens/sec生成速度,12.2 GB内存
-**优胜者**:4-bit模型 (速度快8%,内存效率高17%)
-**硬件平台**:配备32GB统一内存的Apple M2 Max
-**框架版本**:MLX 0.29.0 (针对Apple Silicon优化)

**关键成就:**
- 🏆 **行业领先性能** 在消费级硬件上实现
- 🏆 **内存效率** 使20B模型可在笔记本电脑上运行
- 🏆 **实时响应性** 首token时间<100ms
- 🏆 **原生Apple Silicon优化** 通过MLX框架实现

---

*报告由MLX性能基准测试套件生成*
*硬件:Apple M2 Max (12核) | 框架:MLX 0.29.0 | 模型:GPT-OSS-20B*
*日期:2025-08-31 | 测试时长:每个模型200个token | 准确性:已验证*