File size: 4,722 Bytes
deb7039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from .utils import check_integrity, download_and_extract_archive
from torch.utils.data import Dataset
from PIL import Image
import os
import os.path
import numpy as np
import pickle
from typing import Any, Callable, Optional, Tuple

import torchvision.transforms.functional as TF


class UpsideDownDataset(Dataset):
    
    """
        Adapted from torchvision source code.
        
        Horizontally flips every other image and makes its label '1',
        otherwise makes its label '0'
    """
    
    base_folder = 'cifar-10-batches-py'
    url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
    filename = "cifar-10-python.tar.gz"
    tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
    train_list = [
        ['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
        ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
        ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
        ['data_batch_4', '634d18415352ddfa80567beed471001a'],
        ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
    ]

    test_list = [
        ['test_batch', '40351d587109b95175f43aff81a1287e'],
    ]
    meta = {
        'filename': 'batches.meta',
        'key': 'label_names',
        'md5': '5ff9c542aee3614f3951f8cda6e48888',
    }

    def __init__(
            self,
            root: str,
            train: bool = True,
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
            download: bool = False,
    ) -> None:
        
#         super(CIFAR10, self).__init__(root, transform=transform,
#                                       target_transform=target_transform)

        self.train = train  # training set or test set
        self.root = root
        self.transform = transform
        self.target_transform = target_transform

        if download:
            self.download()

#         if not self._check_integrity():
#             raise RuntimeError('Dataset not found or corrupted.' +
#                                ' You can use download=True to download it')

        if self.train:
            downloaded_list = self.train_list
        else:
            downloaded_list = self.test_list

        self.data: Any = []
        self.targets = []

        # now load the picked numpy arrays
        for file_name, checksum in downloaded_list:
            file_path = os.path.join(self.root, self.base_folder, file_name)
            with open(file_path, 'rb') as f:
                entry = pickle.load(f, encoding='latin1')
                self.data.append(entry['data'])
                if 'labels' in entry:
                    self.targets.extend(entry['labels'])
                else:
                    self.targets.extend(entry['fine_labels'])

        self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
        self.data = self.data.transpose((0, 2, 3, 1))  # convert to HWC

#         self._load_meta()
        
#     def _load_meta(self) -> None:
#         path = os.path.join(self.root, self.base_folder, self.meta['filename'])
#         if not check_integrity(path, self.meta['md5']):
#             raise RuntimeError('Dataset metadata file not found or corrupted.' +
#                                ' You can use download=True to download it')
#         with open(path, 'rb') as infile:
#             data = pickle.load(infile, encoding='latin1')
#             self.classes = data[self.meta['key']]
#         self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
        img, target = self.data[index], self.targets[index]

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img)
        
        if index % 2 == 0:
            img = TF.vflip(img)
            target = 1
            
        if index % 2 != 0:
            target = 0
            
        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target


    def __len__(self) -> int:
        return len(self.data)
    
    def download(self) -> None:
#         if self._check_integrity():
#             print('Files already downloaded and verified')
#             return
        download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)

    def extra_repr(self) -> str:
        return "Split: {}".format("Train" if self.train is True else "Test")