File size: 24,512 Bytes
4265aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import argparse
import json
import os
import time
import glob
import logging
import sys
import traceback
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Any, Optional, Tuple

def get_project_root() -> Path:
    """Get the project root directory."""
    # Use the current working directory as the project root
    return Path.cwd()

def ensure_directory(path: Path) -> None:
    """Ensure directory exists, create if it doesn't."""
    path.mkdir(parents=True, exist_ok=True)

# Configure logging
log_dir = Path('test_result')
ensure_directory(log_dir)

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(sys.stdout),
        logging.FileHandler(log_dir / 'tokenizer_test.log')
    ]
)
logger = logging.getLogger(__name__)

class Tokenizer:
    def __init__(self, tokenizer_path: str):
        """Initialize the EZ-Tokenizer with enhanced error handling and validation."""
        try:
            from tokenizers import Tokenizer as HFTokenizer
            
            logger.info(f"Loading EZ-Tokenizer from {tokenizer_path}")
            if not os.path.exists(tokenizer_path):
                raise FileNotFoundError(f"EZ-Tokenizer file not found: {tokenizer_path}")
            
            start_time = time.time()
            self.tokenizer = HFTokenizer.from_file(tokenizer_path)
            load_time = time.time() - start_time
            
            self.vocab_size = self.tokenizer.get_vocab_size()
            logger.info(f"EZ-Tokenizer loaded in {load_time:.2f} seconds. Vocabulary size: {self.vocab_size:,}")
            
            # Run basic smoke tests
            self._run_smoke_tests()
            
        except Exception as e:
            logger.error(f"Failed to initialize EZ-Tokenizer: {e}", exc_info=True)
            logger.error(f"Failed to initialize tokenizer: {e}", exc_info=True)
            raise

    def _run_smoke_tests(self):
        """Run basic smoke tests to verify tokenizer functionality."""
        test_cases = [
            "Hello, world!",
            "γ“γ‚“γ«γ‘γ―δΈ–η•Œ",
            "μ•ˆλ…•ν•˜μ„Έμš”",
            "ΠŸΡ€ΠΈΠ²Π΅Ρ‚, ΠΌΠΈΡ€!",
            "12345 !@#$%^&*()_+{}|:<>?",
            ""
        ]
        
        logger.info("Running smoke tests...")
        for text in test_cases:
            try:
                tokens = self.encode(text)
                decoded = self.decode(tokens)
                if text != decoded:
                    logger.warning(f"Roundtrip mismatch for {text!r} -> {decoded!r}")
            except Exception as e:
                logger.error(f"Smoke test failed for {text!r}: {e}")
                raise
        logger.info("Smoke tests completed successfully")

    def encode(self, text: str, chunk_size: int = 10000) -> List[int]:
        """Encode text to token IDs with chunking for large inputs."""
        try:
            if not isinstance(text, str):
                raise ValueError(f"Expected string, got {type(text).__name__}")
                
            # Process in chunks if text is large
            if len(text) <= chunk_size:
                return self.tokenizer.encode(text).ids
                
            # Process large text in chunks
            tokens = []
            for i in range(0, len(text), chunk_size):
                chunk = text[i:i + chunk_size]
                tokens.extend(self.tokenizer.encode(chunk).ids)
            return tokens
            
        except Exception as e:
            logger.error(f"Encoding failed: {e}")
            raise RuntimeError(f"Failed to encode text (length: {len(text)}): {e}")

    def decode(self, token_ids: List[int], chunk_size: int = 10000) -> str:
        """Decode token IDs back to text with memory-efficient chunking."""
        try:
            if not token_ids:
                return ""
                
            if not all(isinstance(t, int) for t in token_ids):
                raise ValueError("All token IDs must be integers")
                
            # Process in chunks to prevent memory issues
            if len(token_ids) <= chunk_size:
                return self.tokenizer.decode(token_ids)
                
            # Process large token sequences in chunks
            chunks = []
            for i in range(0, len(token_ids), chunk_size):
                chunk = token_ids[i:i + chunk_size]
                chunks.append(self.tokenizer.decode(chunk))
                
                # Log progress periodically
                if (i // chunk_size) % 10 == 0:
                    logger.info(f"Decoded {min(i + chunk_size, len(token_ids)):,}/{len(token_ids):,} tokens")
                    
            return "".join(chunks)
            
        except Exception as e:
            logger.error(f"Decoding failed: {e}")
            raise RuntimeError(f"Failed to decode {len(token_ids)} tokens: {e}")

    def get_vocab_size(self) -> int:
        """Return the size of the tokenizer's vocabulary."""
        return self.vocab_size

def process_file_in_chunks(file_path: str, chunk_size: int = 1024 * 1024) -> str:
    """Read a file in chunks to avoid memory issues."""
    chunks = []
    try:
        with open(file_path, 'r', encoding='utf-8', errors='replace') as f:
            while True:
                chunk = f.read(chunk_size)
                if not chunk:
                    break
                chunks.append(chunk)
        return "".join(chunks)
    except Exception as e:
        logger.error(f"Error reading file {file_path}: {e}")
        raise

def normalize_whitespace(text: str) -> str:
    """Normalize whitespace in code for more meaningful comparison."""
    import re
    # Replace all whitespace sequences with a single space
    text = re.sub(r'\s+', ' ', text)
    # Remove leading/trailing whitespace
    return text.strip()

def calculate_token_metrics(original_tokens, decoded_tokens):
    """Calculate token-level accuracy metrics."""
    min_len = min(len(original_tokens), len(decoded_tokens))
    exact_matches = sum(1 for a, b in zip(original_tokens, decoded_tokens) if a == b)
    
    return {
        'token_accuracy': exact_matches / max(len(original_tokens), 1),
        'token_precision': exact_matches / max(len(decoded_tokens), 1),
        'token_recall': exact_matches / max(len(original_tokens), 1),
        'token_f1': 2 * exact_matches / (len(original_tokens) + len(decoded_tokens)) 
                  if (len(original_tokens) + len(decoded_tokens)) > 0 else 0
    }

def enhanced_char_metrics(original: str, decoded: str) -> dict:
    """Calculate enhanced character-level metrics."""
    # Normalize both strings
    norm_original = normalize_whitespace(original)
    norm_decoded = normalize_whitespace(decoded)
    
    # Calculate basic metrics
    min_len = min(len(norm_original), len(norm_decoded))
    max_len = max(len(norm_original), len(norm_decoded))
    
    if max_len == 0:
        return {
            'char_accuracy': 1.0,
            'char_similarity': 1.0,
            'length_diff_ratio': 0.0
        }
    
    # Calculate matches
    matches = sum(1 for a, b in zip(norm_original, norm_decoded) if a == b)
    
    # Calculate similarity using Levenshtein distance if available
    try:
        from Levenshtein import ratio
        similarity = ratio(norm_original, norm_decoded)
    except ImportError:
        similarity = matches / max_len if max_len > 0 else 1.0
    
    return {
        'char_accuracy': matches / max_len if max_len > 0 else 1.0,
        'char_similarity': similarity,
        'length_diff_ratio': abs(len(norm_original) - len(norm_decoded)) / max_len if max_len > 0 else 0.0
    }

def validate_code_integrity(original: str, decoded: str) -> dict:
    """Validate code-specific integrity metrics."""
    import ast
    
    def can_parse(code: str) -> bool:
        try:
            ast.parse(code)
            return True
        except:
            return False
    
    original_parses = can_parse(original)
    decoded_parses = can_parse(decoded)
    
    return {
        'original_parses': original_parses,
        'decoded_parses': decoded_parses,
        'both_parse': original_parses and decoded_parses
    }

def calculate_metrics(original_text: str, decoded_text: str, tokens, 
                      start_time: float, end_time: float) -> Dict[str, Any]:
    """Enhanced metrics calculation for tokenizer evaluation."""
    # Basic metrics
    token_count = len(tokens) if tokens else 0
    char_count = len(original_text) if original_text else 0
    process_time = max(end_time - start_time, 0.001)  # Avoid division by zero
    
    metrics = {
        'tokens': token_count,
        'chars': char_count,
        'processing_time': process_time,
        'tokens_per_second': token_count / process_time,
        'chars_per_token': char_count / (token_count or 1)  # Avoid division by zero
    }
    
    # Calculate rates
    metrics.update({
        'tokens_per_sec': len(tokens) / metrics['processing_time'],
        'chars_per_sec': len(original_text) / metrics['processing_time']
    })
    
    # Enhanced character-level metrics
    metrics.update(enhanced_char_metrics(original_text, decoded_text))
    
    # Token-level metrics (if we have the original tokens)
    if hasattr(tokens, 'tokens'):  # If using tokenizers' Encoding object
        original_tokens = tokens.tokens
        decoded_tokens = tokenizer.encode(decoded_text).tokens
        metrics.update(calculate_token_metrics(original_tokens, decoded_tokens))
    
    # Code-specific validation for Python files
    if original_text.strip().endswith('.py') or 'def ' in original_text or 'import ' in original_text:
        metrics.update(validate_code_integrity(original_text, decoded_text))
    
    return metrics

def print_metrics_summary(metrics: Dict[str, Any]):
    """Print a clean summary of the metrics."""
    print("\n=== Tokenizer Test Results ===")
    print(f"Processing Speed: {metrics.get('tokens_per_second', metrics.get('tokens_per_sec', 0)):,.0f} tokens/sec")
    print(f"Characters per Token: {metrics.get('chars_per_token', 0):.2f}")
    print(f"\nCharacter-Level Metrics:")
    print(f"  β€’ Accuracy: {metrics.get('char_accuracy', 0)*100:.2f}%")
    print(f"  β€’ Similarity: {metrics.get('char_similarity', 0)*100:.2f}%")
    print(f"  β€’ Levenshtein Ratio: {metrics.get('levenshtein_ratio', 0)*100:.2f}%")
    
    print(f"\nCode Integrity:")
    print(f"  β€’ Original parses: {'βœ“' if metrics.get('original_parses', False) else 'βœ—'}")
    print(f"  β€’ Decoded parses: {'βœ“' if metrics.get('decoded_parses', False) else 'βœ—'}")
    print(f"  β€’ Both parse: {'βœ“' if metrics.get('both_parse', False) else 'βœ—'}")

def process_file(file_path: Path, tokenizer: Tokenizer, max_chunk_size: int = 100_000, sample_size: int = 100_000) -> Dict[str, Any]:
    """Process a single file in chunks and return metrics."""
    try:
        logger.info(f"\nProcessing file: {file_path}")
        file_size = file_path.stat().st_size
        logger.info(f"File size: {file_size / (1024*1024):.2f} MB")
        
        # Initialize metrics
        total_tokens = 0
        total_chars = 0
        total_time = 0
        chunk_metrics = []
        
        # Process file in chunks
        total_read = 0
        with open(file_path, 'r', encoding='utf-8', errors='replace') as f:
            # Only read up to sample_size if specified
            max_to_read = sample_size if sample_size > 0 else float('inf')
            logger.info(f"Processing up to {max_to_read if max_to_read != float('inf') else 'all'} characters")
            
            chunk = f.read(min(max_chunk_size, max_to_read - total_read))
            total_read += len(chunk)
            
            while chunk and total_read <= max_to_read:
                if not chunk.strip():
                    chunk = f.read(max_chunk_size)
                    continue
                    
                # Process chunk
                start_time = time.time()
                try:
                    # Handle both tokenizer output formats (object with .ids or raw list)
                    tokens = tokenizer.encode(chunk)
                    token_ids = tokens.ids if hasattr(tokens, 'ids') else tokens
                    decoded_text = tokenizer.decode(token_ids)
                except Exception as e:
                    logger.error(f"Error in tokenization: {e}")
                    # Skip this chunk if tokenization fails
                    chunk = f.read(max_chunk_size)
                    continue
                    
                end_time = time.time()
                
                # Skip empty chunks
                if not token_ids:
                    chunk = f.read(max_chunk_size)
                    continue
                
                # Calculate metrics for this chunk
                metrics = calculate_metrics(chunk, decoded_text, token_ids, start_time, end_time)
                chunk_metrics.append(metrics)
                
                # Update totals
                total_tokens += len(token_ids)
                total_chars += len(chunk)
                total_time += (end_time - start_time)
                
                # Log progress
                if total_tokens % 1_000_000 == 0:
                    logger.info(f"  Processed {total_tokens:,} tokens ({total_chars/1024/1024:.2f} MB)")
                
                # Read next chunk (respecting sample size)
                to_read = min(max_chunk_size, max_to_read - total_read)
                if to_read <= 0:
                    # We've reached the sample size limit
                    break
                    
                chunk = f.read(to_read)
                total_read += len(chunk)
        
        # Calculate aggregate metrics
        if not chunk_metrics:
            logger.warning(f"No valid content found in file: {file_path}")
            return None
            
        # Calculate weighted averages based on token counts
        total_weight = sum(m.get('tokens', 0) for m in chunk_metrics) or 1
        
        avg_metrics = {
            'chars_per_token': sum(m.get('chars_per_token', 0) * m.get('tokens', 0) for m in chunk_metrics) / total_weight,
            'tokens_per_second': sum(m.get('tokens', 0) for m in chunk_metrics) / (total_time or 1),
            'char_accuracy': sum(m.get('char_accuracy', 0) * m.get('tokens', 0) for m in chunk_metrics) / total_weight,
            'tokens': total_tokens,
            'chars': total_chars,
            'processing_time': total_time,
            'file_path': str(file_path)
        }
        
        # Log final metrics
        logger.info(f"  Total tokens: {total_tokens:,}")
        logger.info(f"  Total chars: {total_chars:,}")
        logger.info(f"  Avg chars/token: {avg_metrics['chars_per_token']:.2f}")
        logger.info(f"  Avg tokens/sec: {avg_metrics['tokens_per_second']:,.2f}")
        
        return avg_metrics
        
    except Exception as e:
        logger.error(f"Error processing {file_path}: {e}")
        logger.error(traceback.format_exc())
        return None

def process_single_file(tokenizer: Tokenizer, file_path: str, sample_size: int = 0) -> Dict[str, Any]:
    """Process a single file and return metrics."""
    logger.info(f"\nProcessing file: {file_path}")
    
    try:
        # Process file in chunks with sample size limit
        metrics = process_file(file_path, tokenizer, sample_size=sample_size)
        
        if not metrics:
            logger.warning(f"Empty file or no valid content found: {file_path}")
            return {}
        
        # Add file info
        metrics['file'] = os.path.basename(file_path)
        metrics['file_size_mb'] = os.path.getsize(file_path) / (1024 * 1024)
        
        # Log summary
        logger.info(
            f"Processed {metrics['file_size_mb']:.2f}MB: "
            f"{metrics['tokens']:,} tokens, "
            f"{metrics['chars_per_token']:.2f} chars/token, "
            f"{metrics['tokens_per_second']:,.2f} tokens/sec"
        )
        
        # Print detailed metrics summary
        print_metrics_summary(metrics)
        
        return metrics
        
    except Exception as e:
        logger.error(f"Error processing {file_path}: {e}", exc_info=True)
        return {'file': os.path.basename(file_path), 'error': str(e)}

def main():
    # Set up default paths
    project_root = get_project_root()
    # Point to the root directory (one level up from Test_tokenizer)
    root_dir = project_root.parent
    default_tokenizer = root_dir / 'output' / 'tokenizer.json'
    default_input = root_dir / 'Dataset'  # Changed to look in root directory
    default_output = root_dir / 'test_result'  # Also put test results in root
    
    # Ensure output directory exists
    ensure_directory(default_output)
    
    # Generate timestamp for output file
    timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
    default_output_file = default_output / f'test_results_{timestamp}.txt'
    
    parser = argparse.ArgumentParser(description='Test tokenizer on code files')
    parser.add_argument('--tokenizer', type=str, default=str(default_tokenizer),
                      help=f'Path to tokenizer.json file (default: {default_tokenizer})')
    parser.add_argument('--input', type=str, default=str(default_input),
                      help=f'Input directory or file (default: {default_input})')
    parser.add_argument('--output', type=str, default=str(default_output_file),
                      help=f'Output text file for results (default: {default_output_file})')
    parser.add_argument('--sample', type=int, default=100000, help='Only process this many characters from each file (0 for full file)')
    parser.add_argument('--max-files', type=int, default=10,
                      help='Maximum number of files to process (default: 10)')
    parser.add_argument('--file-types', type=str, default='*',
                      help='Comma-separated list of file extensions to process (e.g., "py,js,json"). Default: all files')
    
    args = parser.parse_args()
    
    # Ensure output directory exists
    output_dir = Path(args.output).parent
    ensure_directory(output_dir)
    
    # Initialize tokenizer
    logger.info(f"Initializing tokenizer from {args.tokenizer}")
    tokenizer = Tokenizer(args.tokenizer)
    
    # Parse file types
    file_extensions = []
    if args.file_types != '*':
        file_extensions = [ext.strip().lower() for ext in args.file_types.split(',')]
        logger.info(f"Filtering by file extensions: {', '.join(file_extensions)}")
    
    # Find input files
    input_path = Path(args.input)
    file_paths = []
    
    if input_path.is_dir():
        # Find all files in the input directory (recursively)
        if file_extensions:
            # If specific extensions are provided, only include those
            for ext in file_extensions:
                pattern = f'*.{ext.lstrip(".")}'
                file_paths.extend(input_path.rglob(pattern))
        else:
            # Otherwise include all files
            file_paths = list(input_path.rglob('*'))
        
        # Filter out directories, hidden files, and ensure files exist
        file_paths = [
            f for f in file_paths 
            if f.is_file() and not f.name.startswith(('.', '_'))
        ]
        
        # Sort files by size (smallest first) to process quicker files first
        file_paths.sort(key=lambda x: x.stat().st_size)
        
        logger.info(f"Found {len(file_paths)} files in {input_path}")
        if file_paths:
            logger.info(f"Sample files: {', '.join(f.name for f in file_paths[:min(5, len(file_paths))])}" + 
                      ('...' if len(file_paths) > 5 else ''))
    else:
        # Single file
        file_paths = [input_path] if input_path.exists() else []
        logger.info(f"Processing single file: {input_path}")
    
    if not file_paths:
        logger.warning(f"No files found in {input_path}")
        return
    
    # Process files
    all_metrics = []
    processed_count = 0
    skipped_files = 0
    
    # Get unique file paths (remove duplicates and sort)
    unique_file_paths = []
    seen_paths = set()
    
    for file_path in file_paths:
        abs_path = str(file_path.absolute())
        if abs_path not in seen_paths:
            seen_paths.add(abs_path)
            unique_file_paths.append(file_path)
    
    if len(unique_file_paths) < len(file_paths):
        logger.info(f"Removed {len(file_paths) - len(unique_file_paths)} duplicate file paths")
    
    # Limit to max_files if specified
    if args.max_files > 0:
        unique_file_paths = unique_file_paths[:args.max_files]
    
    # Process each file
    for file_path in unique_file_paths:
        try:
            if not file_path.exists():
                logger.warning(f"File not found: {file_path}")
                skipped_files += 1
                continue
                
            file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
            logger.info(f"\nProcessing: {file_path.name} ({file_size_mb:.2f} MB)")
            
            # Process the file with sample option
            metrics = process_single_file(tokenizer, file_path, args.sample)
            if metrics:
                all_metrics.append(metrics)
                processed_count += 1
                logger.info(f"Processed {processed_count}/{len(unique_file_paths)} files")
        except Exception as e:
            logger.error(f"Error processing {file_path}: {str(e)}")
            skipped_files += 1
    
    if skipped_files > 0:
        logger.warning(f"Skipped {skipped_files} files due to errors")
            
    # Calculate averages from all metrics
    if all_metrics:
        avg_metrics = {}
        for key in all_metrics[0].keys():
            if isinstance(all_metrics[0][key], (int, float)):
                values = [r[key] for r in all_metrics if key in r]
                if values:
                    avg_metrics[f'avg_{key}'] = sum(values) / len(values)
                    
    # Write results to file
    with open(args.output, 'w', encoding='utf-8') as f:
        f.write("=== Tokenizer Test Results ===\n")
        f.write(f"Generated at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
        f.write(f"Tokenizer: {args.tokenizer}\n")
        f.write(f"Input: {args.input}\n")
        f.write(f"Sample size: {args.sample if args.sample > 0 else 'Full file'}\n\n")
        
        f.write("=== Summary ===\n")
        if all_metrics:
            # Write aggregate metrics
            for key, value in avg_metrics.items():
                if isinstance(value, float):
                    f.write(f"{key}: {value:.4f}\n")
                else:
                    f.write(f"{key}: {value}\n")
        else:
            f.write("No files were successfully processed\n")
        
        # Write individual file results
        f.write("\n=== File Details ===\n")
        for result in all_metrics:
            f.write(f"\nFile: {result.get('file', 'unknown')}\n")
            for key, value in result.items():
                if key != 'file':
                    if isinstance(value, float):
                        f.write(f"  {key}: {value:.4f}\n")
                    else:
                        f.write(f"  {key}: {value}\n")
    
    logger.info(f"Results saved to {args.output}")
    print(f"\nTest results saved to: {args.output}")
        
    if all_metrics:
        logger.info(f"\n=== Test Complete ===")
        logger.info(f"Processed {processed_count} files")
        logger.info(f"Average chars/token: {avg_metrics.get('avg_chars_per_token', 0):.2f}")
        logger.info(f"Average tokens/sec: {avg_metrics.get('avg_tokens_per_sec', 0):,.0f}")
    else:
        logger.warning("No files were successfully processed")

if __name__ == "__main__":
    try:
        # Check for required dependencies
        try:
            import Levenshtein
        except ImportError:
            logger.warning("python-Levenshtein not found. Install with: pip install python-Levenshtein")
            logger.warning("Falling back to basic similarity metrics")
        
        main()
    except KeyboardInterrupt:
        logger.info("\nProcess interrupted by user")
        sys.exit(1)
    except Exception as e:
        logger.error(f"An error occurred: {e}", exc_info=True)
        sys.exit(1)