File size: 7,931 Bytes
4265aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import sys
from pathlib import Path
from tokenizers import Tokenizer
from typing import Optional, Tuple, List, Dict, Any
import json

def get_project_root() -> Path:
    """Get the project root directory."""
    # Use the current working directory as the project root
    return Path.cwd()

def setup_paths() -> Tuple[Path, Path, Path]:
    """Set up and validate required paths.
    
    Returns:
        Tuple containing (tokenizer_path, data_dir, output_dir)
    """
    root = get_project_root()
    
    # Define paths - look in root directory (one level up from Test_tokenizer)
    tokenizer_path = root.parent / 'output' / 'tokenizer.json'
    data_dir = root.parent / 'Dataset'  # Look in root directory
    output_dir = root.parent / 'test_result'  # Output to root directory
    
    # Create output directory if it doesn't exist
    output_dir.mkdir(parents=True, exist_ok=True)
    output_dir.mkdir(parents=True, exist_ok=True)
    
    # Validate paths
    if not tokenizer_path.exists():
        print(f"Error: Tokenizer not found at {tokenizer_path}")
        sys.exit(1)
        
    if not data_dir.exists():
        print(f"Error: Data directory not found at {data_dir}")
        sys.exit(1)
    
    return tokenizer_path, data_dir, output_dir

def get_first_chunk_file(data_dir: Path) -> Optional[Path]:
    """Get the first chunk file from the data directory."""
    # Look for .txt files in the data directory
    chunk_files = sorted(list(data_dir.glob('*.txt')))
    if not chunk_files:
        print(f"Error: No .txt files found in {data_dir}")
        return None
    return chunk_files[0]  # Return the first chunk file

def test_tokenizer_on_chunk(tokenizer: Tokenizer, chunk_path: Path, max_lines: int = 1000) -> Dict[str, Any]:
    """Test the tokenizer on the first max_lines of a chunk file."""
    results = {
        'total_lines': 0,
        'lines_processed': 0,
        'total_tokens': 0,
        'perfect_matches': 0,
        'total_chars': 0,
        'total_diff_chars': 0,
        'lines': []
    }
    
    try:
        with open(chunk_path, 'r', encoding='utf-8') as f:
            for i, line in enumerate(f):
                if i >= max_lines:
                    break
                    
                line = line.strip()
                if not line:  # Skip empty lines
                    continue
                    
                # Tokenize and decode
                encoding = tokenizer.encode(line)
                decoded = tokenizer.decode(encoding.ids)
                
                # Calculate differences
                diff_chars = sum(1 for a, b in zip(line, decoded) if a != b)
                diff_chars += abs(len(line) - len(decoded))
                is_perfect = diff_chars == 0
                
                # Update results
                results['total_lines'] += 1
                results['lines_processed'] += 1
                results['total_tokens'] += len(encoding.tokens)
                results['total_chars'] += len(line)
                results['total_diff_chars'] += diff_chars
                results['perfect_matches'] += 1 if is_perfect else 0
                
                # Store detailed results for the first few lines
                if i < 5:  # First 5 lines
                    results['lines'].append({
                        'original': line[:200] + ('...' if len(line) > 200 else ''),
                        'decoded': decoded[:200] + ('...' if len(decoded) > 200 else ''),
                        'tokens': encoding.tokens[:10],  # First 10 tokens
                        'is_perfect': is_perfect,
                        'diff_chars': diff_chars,
                        'similarity': 1 - (diff_chars / max(len(line), 1))
                    })
                
                # Print progress
                if (i + 1) % 100 == 0:
                    print(f"Processed {i+1} lines...")
                    
    except Exception as e:
        print(f"Error processing file: {e}")
        return results
    
    return results

def print_summary(results: Dict[str, Any], output_path: Path) -> None:
    """Print and save test summary in TXT format with script name in the filename."""
    if not results['lines_processed']:
        print("No lines were processed.")
        return
    
    # Calculate statistics
    avg_tokens_per_line = results['total_tokens'] / results['lines_processed']
    total_chars = results['total_chars']
    total_diff_chars = results['total_diff_chars']
    accuracy = 1 - (total_diff_chars / total_chars) if total_chars > 0 else 0
    diff_percentage = (total_diff_chars / total_chars * 100) if total_chars > 0 else 0
    
    # Get script name without extension
    script_name = Path(__file__).stem
    
    # Prepare summary text
    summary = [
        "="*80,
        "TOKENIZER TEST SUMMARY",
        "="*80,
        f"Test Script:       {script_name}.py",
        f"Timestamp:          {results.get('timestamp', 'N/A')}",
        f"Tokenizer:          {results.get('tokenizer_path', 'N/A')}",
        f"Chunk file:         {results.get('chunk_file', 'N/A')}",
        "-"*80,
        f"Lines processed:     {results['lines_processed']}",
        f"Perfect matches:     {results['perfect_matches']} ({results['perfect_matches']/results['lines_processed']*100:.1f}%)",
        f"Average tokens/line:  {avg_tokens_per_line:.2f}",
        f"Total characters:    {total_chars:,}",
        f"Total tokens:        {results['total_tokens']:,}",
        f"Character accuracy:   {accuracy*100:.2f}%",
        f"Character diff:      {total_diff_chars:,} chars ({diff_percentage:.4f}%)",
        f"Chars per token:     {total_chars/results['total_tokens']:.2f} (lower is better)",
        "\nSAMPLE LINES:",
        "-"*40
    ]
    
    # Add sample lines
    for i, line in enumerate(results.get('lines', [])[:3]):
        summary.extend([
            f"\nSAMPLE {i+1}:",
            f"Original: {line.get('original', '')}",
            f"Decoded:  {line.get('decoded', '')}",
            f"Tokens:   {', '.join(line.get('tokens', [])[:8])}{'...' if len(line.get('tokens', [])) > 8 else ''}",
            f"Match:    {'✓ Perfect' if line.get('is_perfect') else '✗ Different'}",
            "-"*40
        ])
    
    # Print to console
    print("\n".join(summary))
    
    # Save as TXT with script name in filename
    timestamp = results.get('timestamp', '')
    output_file = output_path / f'{script_name}_result_{timestamp}.txt'
    
    with open(output_file, 'w', encoding='utf-8') as f:
        f.write("\n".join(summary))
    
    print(f"\nResults saved to: {output_file}")

def main():
    # Set up paths
    tokenizer_path, data_dir, output_dir = setup_paths()
    
    # Get the first chunk file
    chunk_path = get_first_chunk_file(data_dir)
    if not chunk_path:
        print(f"No files found in {data_dir}. Please ensure the Dataset directory contains text files.")
        return
        
    print(f"Found data directory: {data_dir}")
    print(f"Output directory: {output_dir}")
    
    print(f"Testing tokenizer on first 1000 lines of: {chunk_path.name}")
    
    # Load the tokenizer
    print(f"Loading tokenizer from: {tokenizer_path}")
    tokenizer = Tokenizer.from_file(str(tokenizer_path))
    
    # Get vocabulary info
    vocab = tokenizer.get_vocab()
    print(f"Vocabulary size: {len(vocab):,} tokens")
    
    # Test tokenizer on the chunk
    print("\nTesting tokenizer on chunk...")
    results = test_tokenizer_on_chunk(tokenizer, chunk_path, max_lines=1000)
    
    # Add timestamp and tokenizer info to results
    import time
    results['timestamp'] = time.strftime("%Y%m%d_%H%M%S")
    results['tokenizer_path'] = str(tokenizer_path)
    results['chunk_file'] = str(chunk_path.name)
    
    # Print and save summary
    print_summary(results, output_dir)
    print("\nTest complete!")

if __name__ == "__main__":
    main()