{ "model_id": "JonusNattapong/romeo-v7", "owner": "JonusNattapong", "license": "mit", "tags": [ "trading", "finance", "gold", "xauusd", "forex", "algorithmic-trading", "smart-money-concepts", "smc", "xgboost", "lightgbm", "machine-learning", "backtesting", "technical-analysis", "multi-timeframe", "intraday-trading", "high-frequency-trading", "ensemble-model", "capital-preservation", "risk-management", "recovery-mechanisms", "dynamic-position-sizing" ], "artifacts": [ "trading_model_romeo_15m.pkl" ], "metrics": { "initial_capital": 100.0, "final_capital": 144.24, "total_return_pct": 44.24, "max_drawdown_pct": 8.2, "total_trades": 133, "win_trades": 76, "win_rate": 0.571, "profit_factor": 2.10, "sharpe_ratio": 4.37, "capital_preservation_score": 28.4, "recovery_effectiveness": 1.00, "risk_adjusted_return": 5.38, "avg_trade": 0.33, "high_confidence_trades": 98, "recovery_mode_trades": 0 }, "feature_list": "artifact['features']", "usage": "Load artifact with joblib.load(). Use v7/backtest_v7.py with CapitalPreservationBacktester for capital-preserving backtesting. Key settings: risk_per_trade=0.10, confidence_threshold=0.65, dynamic_position_sizing=True. Includes recovery mechanisms and volatility adjustment.", "training_data": "Yahoo Finance GC=F 15m intraday data with enhanced capital preservation features", "evaluation_data": "Unseen fresh 15m intraday data with capital preservation backtesting", "frameworks": ["scikit-learn", "xgboost", "lightgbm"], "python_version": "3.8+", "dependencies": ["joblib", "pandas", "numpy", "scipy"], "capital_preservation_features": { "dynamic_position_sizing": true, "confidence_filtering": true, "recovery_mechanisms": true, "volatility_adjustment": true, "max_risk_per_trade": 0.15, "recovery_mode_threshold": 0.85, "confidence_threshold": 0.65 }, "caveats": "Capital preservation focused with dynamic risk management. Includes recovery mechanisms for drawdown periods. Historical backtests only; not financial advice. Monitor capital preservation metrics in live trading." }